留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

滴灌条件下氮肥用量对火龙果果实的影响

程玉 徐敏 熊睿 林家年 阮云泽 任太军 赵鹏飞 汤华

程玉, 徐敏, 熊睿, 林家年, 阮云泽, 任太军, 赵鹏飞, 汤华. 滴灌条件下氮肥用量对火龙果果实的影响[J]. 热带生物学报, 2020, 11(1): 25-30. doi: 10.15886/j.cnki.rdswxb.2020.01.005
引用本文: 程玉, 徐敏, 熊睿, 林家年, 阮云泽, 任太军, 赵鹏飞, 汤华. 滴灌条件下氮肥用量对火龙果果实的影响[J]. 热带生物学报, 2020, 11(1): 25-30. doi: 10.15886/j.cnki.rdswxb.2020.01.005
CHENG Yu, XU Min, XIONG Rui, LIN Jianian, RUAN Yunze, REN Taijun, ZHAO Pengfei, TANG Hua. Effects of Different Nitrogen Treatments on Pitaya Fruit Growth and Quality under Drip Irrigation[J]. Journal of Tropical Biology, 2020, 11(1): 25-30. doi: 10.15886/j.cnki.rdswxb.2020.01.005
Citation: CHENG Yu, XU Min, XIONG Rui, LIN Jianian, RUAN Yunze, REN Taijun, ZHAO Pengfei, TANG Hua. Effects of Different Nitrogen Treatments on Pitaya Fruit Growth and Quality under Drip Irrigation[J]. Journal of Tropical Biology, 2020, 11(1): 25-30. doi: 10.15886/j.cnki.rdswxb.2020.01.005

滴灌条件下氮肥用量对火龙果果实的影响

doi: 10.15886/j.cnki.rdswxb.2020.01.005
基金项目: 海南省重点研发项目(ZDYF2018080);海南省农业厅农技示范推广项目(2018-1596-4);国家火龙果良种联合攻关项目
详细信息
    第一作者:

    程玉(1988−),男,海南大学热带作物学院2016级硕士研究生. E-mail:18389595152@163.com

    通信作者:

    汤华(1974−),男,教授. 研究方向:作物遗传育种与分子生物学. E-mail:thtiger@163.com

  • 中图分类号: S 667.9

Effects of Different Nitrogen Treatments on Pitaya Fruit Growth and Quality under Drip Irrigation

  • 摘要: 通过田间试验,研究了滴灌条件下不同施氮量(0,315,450,585,800 kg·hm−2)对火龙果果实生长和品质的影响。结果表明:合理的施氮量能促进火龙果果实的生长,不同生长期果实需氮量不同。施氮量一定程度上影响果实横径的生长,对纵茎影响较小。施氮量对果实中氮钾含量影响较大,二者均随施氮量的增加先增加后降低,但各处理间氮素含量差异不显著,施氮量对磷素含量影响较小。火龙果果实和花中氮磷钾含量均为K>N>P,其中,果实中N∶P∶K=1.00∶0.20∶1.12,花中N∶P∶K=1.00∶0.15∶2.13。不同采收期,氮肥用量对果实中可溶性固形物,可滴定酸和可溶性糖及抗坏血酸等含量的影响存在差异。综合考虑,实际生产中应以T2处理(450 kg·hm−2)施氮量为基础,根据不同采收期来调整施氮量。
  • 表  1  不同氮素水平下火龙果花氮磷钾含量

    Table  1  Nitrogen, phosphorus and potassium contents of flowers of pitaya treated at different nitrogen levels

    处理 Treatment N/(g·kg−1 P/(g·kg−1 K/(g·kg−1
    T0(0 kg·hm−2 24.81±0.54c 3.95±0.04b 54.80±1.41ab
    T1(315 kg·hm−2 25.72±0.26b 4.38±0.01a 58.94±1.13a
    T2(450 kg·hm−2 26.90±0.65ab 3.99±0.09b 53.83±4.13b
    T3(585 kg·hm−2 27.38±0.53a 3.66±0.03c 56.86±2.18ab
    T4(800 kg·hm−2 25.92±0.84bc 3.59±0.11c 53.79±2.03b
      注:表中每一栏不同的字母代表不同处理之间的差异性是否显著(P<0.05),下同。
      Note: Different letters in the same column indicate significant difference between treatments(P<0.05), similarly hereinafter.
    下载: 导出CSV

    表  2  不同氮素水平下第1采样期火龙果果实氮磷钾含量

    Table  2  Nitrogen, phosphorus and potassium contents of fruits of pitaya treated at different nitrogen levels in the first sampling period

    处理 Treatment N/(g·kg−1 P/(g·kg−1 K/(g·kg−1
    T0(0 kg·hm−2 11.16±1.15b 2.07±0.25b 13.33±0.98b
    T1(315 kg·hm−2 13.50±1.26a 2.52±0.26a 14.15±0.57ab
    T2(450 kg·hm−2 15.28±1.29a 2.39±0.21ab 14.39±0.72ab
    T3(585 kg·hm−2 13.49±0.60a 2.25±0.05ab 14.32±0.44ab
    T4(800 kg·hm−2 14.64±1.43a 2.52±0.09a 15.54±1.03a
    下载: 导出CSV

    表  3  不同氮素水平下第2采样期火龙果果实氮磷钾含量

    Table  3  Nitrogen, phosphorus and potassium contents of fruits of pitaya treated at different nitrogen levels in the second sampling period

    处理 Treatment N/(g·kg−1 P/(g·kg−1 K/(g·kg−1
    T0(0 kg·hm−2 9.41±1.12c 2.23±0.15b 11.98±0.44b
    T1(315 kg·hm−2 10.22±0.12bc 2.35±0.13b 12.95±0.21a
    T2(450 kg·hm−2 10.84±0.24b 2.50±0.22ab 13.04±0.16a
    T3(585 kg·hm−2 12.02±0.49a 2.75±0.05a 13.22±0.06a
    T4(800 kg·hm−2 12.93±0.13a 2.48±0.27ab 13.14±0.44a
    下载: 导出CSV

    表  4  不同氮素水平下第1采样期火龙果果实品质指标

    Table  4  Quality index of pitaya fruit under treatments at different nitrogen levels in the first sampling period

    处理
    Treatment
    果实可食率
    Edible rate/%
    可溶性固形物/%
    Soluble solids
    可滴定酸/%
    Titrable acids
    可溶性糖/%
    Soluble sugar
    抗坏血酸/(mg·kg−1
    Ascorbic acid
    果形指数
    Fruit shape index
    T0 68.54±4.57a 18.56±0.10a 0.30±0.05a 4.28±0.94b 4.79±0.75c 1.28±0.05a
    T1 71.64±6.43a 19.11±1.69a 0.32±0.06a 4.29±0.92b 6.75±1.51b 1.31±0.08a
    T2 73.18±3.41a 19.16±0.82a 0.32±0.03a 7.08±1.64a 7.93±1.27a 1.29±0.04a
    T3 72.78±2.16a 18.41±1.06a 0.30±0.03a 2.78±2.81c 4.68±0.89c 1.30±0.06a
    T4 69.13±5.08a 18.11±1.17a 0.30±0.02a 2.18±1.91c 4.59±0.73c 1.34±0.08a
    下载: 导出CSV

    表  5  不同氮素水平下第2采样期火龙果果实品质指标

    Table  5  Quality index of pitaya fruit under treatments at different nitrogen levels in the sampling period

    处理
    Treatment
    果实可食率/%
    Edible rate
    可溶性固形物/%
    Soluble solids
    可滴定酸/%
    Titrable acids
    可溶性糖/%
    Soluble sugar
    抗坏血酸/(mg·kg−1
    Ascrobic acid
    果形指数
    Fruit shape index
    T0 62.27±2.73b 18.55±1.08ab 0.40±0.10b 7.97±1.34a 4.34±1.04a 1.11±0.03a
    T1 65.70±3.88a 19.08±1.15a 0.37±0.07b 8.10±1.70a 4.56±0.69a 1.08±0.04a
    T2 66.39±1.77a 19.07±0.61a 0.46±0.05a 8.26±4.47a 4.58±0.64a 1.11±0.05a
    T3 64.14±2.10ab 18.70±0.78ab 0.41±0.06b 4.74±1.95b 4.30±0.43a 1.11±0.05a
    T4 64.95±1.56ab 17.99±0.79b 0.41±0.05b 4.55±2.43c 4.27±0.59a 1.13±0.05a
    下载: 导出CSV
  • [1] ESQUIVEL P, STINTZING F C, CARLE R. Fruit characteristics during growth and ripening of different Hylocereus genotypes [J]. European Journal of Horticultural Science, 2007, 72(5): 231 − 238.
    [2] 蔡永强, 向青云, 陈家龙, 等. 火龙果的营养成分分析[J]. 经济林研究, 2008, 26(4): 53 − 56. doi:  10.3969/j.issn.1003-8981.2008.04.012
    [3] 李胜海, 张兴无. 火龙果果实和花及茎的应用研究现状[J]. 安徽农业科学, 2009, 37(9): 4007 − 4009. doi:  10.3969/j.issn.0517-6611.2009.09.064
    [4] 徐慧, 王秋玲, 韦刚, 等. 火龙果的保健功效及其研究进展[J]. 广西科学院学报, 2010, 26(3): 383 − 385. doi:  10.3969/j.issn.1002-7378.2010.03.060
    [5] 张立新, 翟永林, 刘永忠, 等. 氮磷钾单施和配施对石榴产量、品质和经济效益的影响[J]. 中国土壤与肥料, 2012(1): 43 − 47. doi:  10.3969/j.issn.1673-6257.2012.01.008
    [6] 李远新, 李进辉, 何莉莉, 等. 氮磷钾配施对保护地番茄产量及品质的影响[J]. 中国蔬菜, 1997(4): 10 − 13.
    [7] 李兴忠, 范建新, 邓仁菊, 等. 氮磷钾肥配施对火龙果产量及品质的影响[J]. 贵州农业科学, 2012, 40(2): 56 − 60. doi:  10.3969/j.issn.1001-3601.2012.02.017
    [8] 曹建康, 姜微波, 赵玉梅.果蔬采后生理生化实验指导[M]. 北京: 中国轻工业出版社, 2007.
    [9] 鲁如坤. 土壤农业化学分析方法[M].北京: 中国农业科技出版社, 1999.
    [10] NERD A, GUTMAN F, MIZRAHI Y. Ripening and postharvest behaviour of fruits of two Hylocereus species (Cactaceae) [J]. Postharvest Biology and Technology, 1999, 17(1): 39 − 45. doi:  10.1016/S0925-5214(99)00035-6
    [11] ORTIZ T A, TAKAHASHI L S A. Physical and chemical characteristics of pitaya fruits at physiological maturity [J]. Genetics and Molecular Research, 2015, 14(4): 14422 − 14439. doi:  10.4238/2015.November.18.5
    [12] 王晶晶, 陈奇凌, 李铭, 等. 不同氮磷钾配施对滴灌红枣果实及植株养分含量的影响[J]. 江苏农业科学, 2014, 42(4): 117 − 119. doi:  10.3969/j.issn.1002-1302.2014.04.043
    [13] 聂大杭, 梁青, 张艳龙, 等. 不同氮肥用量对番茄养分含量、分布及产量的影响[J]. 内蒙古农业大学学报(自然科学版), 2015, 36(2): 31 − 34.
    [14] 张绍铃. 施氮量对不同树势红富士苹果生长和果实品质的影响[J]. 河南农业科学, 1993(5): 28 − 30.
    [15] 唐恒朋, 李莉婕, 钱晓刚, 等. 氮素施用量对火龙果产量、品质及贮藏效果的影响[J]. 河南农业科学, 2016, 45(8): 64 − 68.
  • [1] 李娟, 高翔, 陈思如, 武佳敏, 高伟, 张洪, 阮云泽.  海南火龙果园土壤肥力与根结线虫数量调查 . 热带生物学报, 2024, 15(2): 182-189. doi: 10.15886/j.cnki.rdswxb.20230034
    [2] 彭俊杰, 杜婧加, 马武强, 陈甜甜, 税贤, 周开兵.  钙镁叶面肥对‘妃子笑’荔枝果实糖含量及糖代谢酶活性的影响 . 热带生物学报, 2024, 15(2): 1-7. doi: 10.15886/j.cnki.rdswxb.20230033
    [3] 李佳雪, 丁一, 王猛, 李涛, 郭攀阳, 刘成立, 韦双双, 黄家权, 李洪立, 胡文斌, 汤华.  火龙果HubHLH基因家族的全基因组分析及其对冬季补光诱导开花的表达响应 . 热带生物学报, 2024, 15(2): 1-12. doi: 10.15886/j.cnki.rdswxb.20220108
    [4] 杨乔乔, 韩冰莹, 于博涵, 赖杭桂, 张家明.  紫萍替代饲料对罗非鱼鱼种生长的影响 . 热带生物学报, 2023, 14(4): 451-457. doi: 10.15886/j.cnki.rdswxb.2023.04.013
    [5] 陈琪玉, 李宇飞, 徐航, 刘贤青, 罗杰.  葡萄欧亚种与杂交种的营养品质差异研究 . 热带生物学报, 2023, 14(5): 521-529. doi: 10.15886/j.cnki.rdswxb.20230051
    [6] 王庆萱, 阮云泽, 赵鹏飞.  基于因子-聚类分析的火龙果园土壤养分状况评价 . 热带生物学报, 2023, 14(): 1-7.
    [7] 吴建宇.  容器规格和基质对山牡荆容器苗生长的影响 . 热带生物学报, 2022, 13(6): 569-574. doi: 10.15886/j.cnki.rdswxb.2022.06.005
    [8] 王太行, 潘成才, 王宇, 朱昆宇, 夏金泽, 吉怡颖, 伍治中, 江行玉, 周扬.  不同刈割时期对甜高粱农艺性状及营养品质的影响 . 热带生物学报, 2022, 13(5): 502-508. doi: 10.15886/j.cnki.rdswxb.2022.05.011
    [9] 周运陆, 张龙, 陈仕迁, 项再华, 孙鸿蕊, 符天锋, 张永发.  不同施镁水平对哈密瓜产量和品质的影响 . 热带生物学报, 2022, 13(5): 514-518. doi: 10.15886/j.cnki.rdswxb.2022.05.013
    [10] 王文斌, 张永发, 王大鹏, 罗雪华, 吴小平, 薛欣欣, 赵春梅, 茶正早.  不同时期施入的氮肥在橡胶园土壤中的迁移分布 . 热带生物学报, 2022, 13(1): 42-47. doi: 10.15886/j.cnki.rdswxb.2022.01.007
    [11] 曾子鑫, 吴晓君, 李京晨, 王曙光, 郭佩佩, 张丽.  氮肥与硝化抑制剂联用对热带菜地氧化亚氮排放的影响 . 热带生物学报, 2022, 13(6): 575-581. doi: 10.15886/j.cnki.rdswxb.2022.06.006
    [12] 张亚杰, 陈升孛, 杨静, 张明洁, 张京红.  琼中绿橙气候品质认证技术研究 . 热带生物学报, 2022, 13(4): 391-396. doi: 10.15886/j.cnki.rdswxb.2022.04.010
    [13] 王伟伟, 安馨媛, 陈俊菁.  根癌农杆菌介导火龙果溃疡病菌遗传转化体系的构建及转化子筛选 . 热带生物学报, 2022, 13(3): 243-248. doi: 10.15886/j.cnki.rdswxb.2022.03.006
    [14] 李涛, 王猛, 李佳雪, 王周雯, 丁一, 胡文斌, 李洪立, 汤华.  火龙果果实与种子产量性状的相关性研究 . 热带生物学报, 2022, 13(3): 259-263. doi: 10.15886/j.cnki.rdswxb.2022.03.008
    [15] 葛春晖, 尤文静, 蒋泽橙, 成梓瑜, 汤月, 邵远志.  火龙果采后病原菌的鉴定及其防控处理的优化 . 热带生物学报, 2021, 12(2): 228-235. doi: 10.15886/j.cnki.rdswxb.2021.02.012
    [16] 于婧, 李敏, 高兆银, 弓德强, 张绍刚, 洪小雨, 花静静, 胡美姣.  抑制火龙果果腐病病菌桃吉尔霉的植物精油筛选(简报) . 热带生物学报, 2021, 12(1): 72-74. doi: 10.15886/j.cnki.rdswxb.2021.01.010
    [17] 康梓杭, 倪苗, 邓晶, 吴庆书.  海口市10种行道树最优生长模型研究 . 热带生物学报, 2020, 11(1): 79-83. doi: 10.15886/j.cnki.rdswxb.2020.01.012
    [18] 梅成铭, 王桢昌, 陈海明, 陈文学, 云永欢, 陈卫军, 钟秋平.  冷藏期间鲜切菠萝蜜水分迁移对其品质的影响 . 热带生物学报, 2020, 11(1): 72-78. doi: 10.15886/j.cnki.rdswxb.2020.01.011
    [19] 童璐, 成善汉, 居利香, 徐艺, 雷欣, 倪苗, 汪志伟, 朱国鹏, 陈艳丽.  赤霉素处理对芥蓝主侧薹产量和品质的影响 . 热带生物学报, 2020, 11(1): 7-10, 19. doi: 10.15886/j.cnki.rdswxb.2020.01.002
    [20] 李祥燕, 郑妍妍, 侯志文, 张欢, 廖飞雄.  白掌叶片生长定量分析与生长模型的构建 . 热带生物学报, 2020, 11(4): 461-469. doi: 10.15886/j.cnki.rdswxb.2020.04.009
  • 加载中
图(1) / 表 (5)
计量
  • 文章访问数:  960
  • HTML全文浏览量:  172
  • PDF下载量:  192
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-16
  • 修回日期:  2019-06-30
  • 网络出版日期:  2020-07-03
  • 刊出日期:  2019-11-01

滴灌条件下氮肥用量对火龙果果实的影响

doi: 10.15886/j.cnki.rdswxb.2020.01.005
    基金项目:  海南省重点研发项目(ZDYF2018080);海南省农业厅农技示范推广项目(2018-1596-4);国家火龙果良种联合攻关项目
    作者简介:

    程玉(1988−),男,海南大学热带作物学院2016级硕士研究生. E-mail:18389595152@163.com

    通讯作者: 汤华(1974−),男,教授. 研究方向:作物遗传育种与分子生物学. E-mail:thtiger@163.com
  • 中图分类号: S 667.9

摘要: 通过田间试验,研究了滴灌条件下不同施氮量(0,315,450,585,800 kg·hm−2)对火龙果果实生长和品质的影响。结果表明:合理的施氮量能促进火龙果果实的生长,不同生长期果实需氮量不同。施氮量一定程度上影响果实横径的生长,对纵茎影响较小。施氮量对果实中氮钾含量影响较大,二者均随施氮量的增加先增加后降低,但各处理间氮素含量差异不显著,施氮量对磷素含量影响较小。火龙果果实和花中氮磷钾含量均为K>N>P,其中,果实中N∶P∶K=1.00∶0.20∶1.12,花中N∶P∶K=1.00∶0.15∶2.13。不同采收期,氮肥用量对果实中可溶性固形物,可滴定酸和可溶性糖及抗坏血酸等含量的影响存在差异。综合考虑,实际生产中应以T2处理(450 kg·hm−2)施氮量为基础,根据不同采收期来调整施氮量。

English Abstract

程玉, 徐敏, 熊睿, 林家年, 阮云泽, 任太军, 赵鹏飞, 汤华. 滴灌条件下氮肥用量对火龙果果实的影响[J]. 热带生物学报, 2020, 11(1): 25-30. doi: 10.15886/j.cnki.rdswxb.2020.01.005
引用本文: 程玉, 徐敏, 熊睿, 林家年, 阮云泽, 任太军, 赵鹏飞, 汤华. 滴灌条件下氮肥用量对火龙果果实的影响[J]. 热带生物学报, 2020, 11(1): 25-30. doi: 10.15886/j.cnki.rdswxb.2020.01.005
CHENG Yu, XU Min, XIONG Rui, LIN Jianian, RUAN Yunze, REN Taijun, ZHAO Pengfei, TANG Hua. Effects of Different Nitrogen Treatments on Pitaya Fruit Growth and Quality under Drip Irrigation[J]. Journal of Tropical Biology, 2020, 11(1): 25-30. doi: 10.15886/j.cnki.rdswxb.2020.01.005
Citation: CHENG Yu, XU Min, XIONG Rui, LIN Jianian, RUAN Yunze, REN Taijun, ZHAO Pengfei, TANG Hua. Effects of Different Nitrogen Treatments on Pitaya Fruit Growth and Quality under Drip Irrigation[J]. Journal of Tropical Biology, 2020, 11(1): 25-30. doi: 10.15886/j.cnki.rdswxb.2020.01.005
  • 火龙果(Hylocereus polyrhizus)属仙人掌科(Cactaceae)多年生攀援性植物,原产于热带及亚热带美洲地区[1]。目前,我国广西、广东、海南和台湾等地均有种植。火龙果果实富含水溶性膳食纤维,维生素C,花青素等营养成分,具有极高的保健和商业价值[2-4]。果实在生长发育期间需要提供足够的养分以保证果实的正常生长发育[5-6],李兴忠等研究认为,不同氮、磷、钾肥的配施水平均可显著提高火龙果的产量[7],但目前关于火龙果的施肥研究不多。随着栽培技术的改进,火龙果种植模式由传统的“单柱式”逐渐向“排式”转变,施肥方式向水肥一体化转变。为此,笔者以2年生排式种植的火龙果为材料,研究了滴灌条件下不同氮素水平对火龙果果实生长及品质的影响,旨在为火龙果生殖生长阶段的合理施肥提供理论依据。

    • 红肉火龙果品种为台湾‘软枝大红’。

    • 试验地位于广西崇左市江州区那隆镇(E107.57°,N22.72°),海拔140 m,属亚热带季风气候。基地建于2017年5月,面积15 hm2,种植密度11 400株·hm−2,年日照可达1 600 h,年平均气温22.3 ℃,年均降雨量1 200 mm,全年无霜期364 d。试验地土壤为赤红土壤,pH5.35,耕层土壤(0~20 cm)含全氮740 mg·kg−1、有效磷140 mg·kg−1、速效钾350 mg·kg−1、有机质12.54 g·kg−1

    • 在磷肥(170 kg·hm−2)和钾肥(580 kg·hm−2)不变的基础上设置5个氮肥(纯氮)水平:0(T0),315 kg·hm−2(T1),450 kg·hm−2(T2),585 kg·hm−2(T3),800 kg·hm−2(T4)。每个处理设置4次重复,共20个小区,随机区组排列。选择地势平缓、整齐、肥力差异较小的地块作为火龙果试验用地,采用“单排”式栽培模式,每个小区含有2条滴带,滴孔间距15 cm,铺设在火龙果苗两侧,距离火龙果苗5 cm。相邻小区行距2.5 m,苗株距20 cm。试验用的氮肥为尿素(阳煤丰喜肥业有限公司生产,N≥46.4%),磷肥为久久磷钾(深圳市富威特植物营养有限公司生产,P2O5≥51%),钾肥为速溶硫酸钾(深圳市德华肥料有限公司代理,K2O≥51%)和久久磷钾(深圳市富威特植物营养有限公司生产,K2O≥34%)。除施氮量不同外,其他田间管理均与常规管理相同。每月施肥6次,平均每5天施肥1次。

    • 火龙果花于2018−05−19上午9:00~10:00取样。每个处理选取9朵火龙果花,样品采集后用干净的湿纱布擦去花朵外表面的灰尘,然后将花放置于档案袋中,于105 ℃温度下杀青30 min,再调至85 ℃至完全烘干,然后粉碎保存在密封袋中,做标记,用于测量火龙果花氮磷钾含量。

      果实采样时间分别为2018−07−05和2018−09−05上午9:00~10:00。每个处理选取9个果实,样品采集后先用清水清洗,再用去离子水冲洗2~3遍,置于4 ℃冰箱中进行预冷处理,然后将样品送到实验室进行品质分析。取部分新鲜火龙果果肉置于铝盒中,先于105 ℃温度下杀青30 min,再调至85 ℃至完全烘干,然后粉碎保存在密封袋中,做标记,用于测量果实氮磷钾含量。

    • 选择各小区内所有火龙果果实观察测量果实生长(2018−09−23—10−26),每3天观察测量1次,共计12次,33 d。测量方法:用游标卡尺测量果实基部到顶端的距离,记为果实纵径;用游标卡尺测量果实中心部的宽度,记为果实横径。果形指数=果实纵径/果实横径。

    • 在果实采收时,每小区选择3个果实,每个处理9个果实,分析果实可溶性固形物、可溶性糖和抗坏血酸及果实有机酸含量。其中,可溶性固形物含量采用折射仪法测定;可溶性糖含量采用蒽酮−乙酸乙酯法测定;抗坏血酸含量分光光度计法测定;有机酸含量采用酸碱滴定法测定[8]

    • 样品全氮含量采用H2SO4-H2O2消煮−纳氏比色法测定;样品全磷含量采用H2SO4-H2O2消煮−钼锑抗比色法测定;样品全钾含量采用H2SO4-H2O2消煮−火焰光度法测定[9]

    • 数据分析用Excel和SPSS 20.0 进行,利用方差分析检验不同氮素处理下火龙果果实矿质养分含量及品质之间的差异性。

    • 图1可知,火龙果花谢后到果实成熟前,不同氮肥用量下火龙果果实的纵径和横径的差异逐渐增大。由图1ab可知,在花后6 d时,各处理果实纵径和横径差异较小。随着果实生育期的延长,氮肥用量对果实纵径和横径的影响逐渐显现出来。果实生长末期,随着氮肥用量的增加,果实纵径和横径均呈现出先增加后降低的趋势,且T2处理果实纵径和横径均达最大值,分别为104.99,93.05 mm,分别较T0处理提高了10.18%和4.67%。

      图  1  不同氮素水平下火龙果果实的生长发育规律

      Figure 1.  The growth and development of fruits of pitaya treated at different nitrogen levels

      不同处理间火龙果果形指数变化相似,均逐渐变小。如图1c所示,花后6 d时,T0,T1,T2,T3和T4处理果形指数分别为1.19,1.21,1.20,1.20和1.20,但各处理间火龙果果形指数差异不显著。在果实生长发育过程中,果实横径的生长速率高于纵径,成熟时各处理火龙果果形指数分别为1.07,1.11,1.13,1.10和1.06,但各处理间差异不显著,果实近似圆形。

    • 表1可以看出,不同氮素水平下火龙果花中氮磷钾含量存在较大差异。随着氮素水平的增加,各处理火龙果花中氮磷含量均呈现出先增加后降低的趋势。其中T3火龙果花中氮含量达最高值为27.38 g·kg−1,T1,T2,T3和T4处理火龙果花中氮素含量均高于T0处理,分别较T0处理增加了3.67%,8.42%,10.36%和4.47%,且T1,T2和T3处理均显著高于T0处理;T1处理火龙果花中磷含量达最高值为4.38 g·kg−1,较T0处理增加了10.89%,且显著高于其他处理,而T2处理与T0处理差异不显著,其余处理则低于T0处理。T1和T3处理火龙果花中全钾含量均高于T0处理,分别较T0处理增加了7.55%和3.76%,而其余处理则低于T0处理。不同处理火龙果花中氮磷钾含量存在差异,而同一处理火龙果花中氮磷钾含量也存在差异,从表1可知,各处理火龙果花中氮磷钾含量均依次为K>N>P。

      表 1  不同氮素水平下火龙果花氮磷钾含量

      Table 1.  Nitrogen, phosphorus and potassium contents of flowers of pitaya treated at different nitrogen levels

      处理 Treatment N/(g·kg−1 P/(g·kg−1 K/(g·kg−1
      T0(0 kg·hm−2 24.81±0.54c 3.95±0.04b 54.80±1.41ab
      T1(315 kg·hm−2 25.72±0.26b 4.38±0.01a 58.94±1.13a
      T2(450 kg·hm−2 26.90±0.65ab 3.99±0.09b 53.83±4.13b
      T3(585 kg·hm−2 27.38±0.53a 3.66±0.03c 56.86±2.18ab
      T4(800 kg·hm−2 25.92±0.84bc 3.59±0.11c 53.79±2.03b
        注:表中每一栏不同的字母代表不同处理之间的差异性是否显著(P<0.05),下同。
        Note: Different letters in the same column indicate significant difference between treatments(P<0.05), similarly hereinafter.
    • 表2可以看出,不同氮素水平下,火龙果果实氮磷钾含量存在差异。第1次采样期,随着氮素水平的增加,各处理果实中氮素含量总体呈现出先增加后降低的趋势;T1,T2,T3和T4处理果实氮素含量均高于T0处理,且达到差异显著性水平。T1,T2,T3和T4处理果实中磷素含量均高于T0处理,其中T2和T4与T0差异显著。各处理果实中钾素含量呈现出逐渐增加的趋势,其中T4处理含量显著高于T0处理。

      表 2  不同氮素水平下第1采样期火龙果果实氮磷钾含量

      Table 2.  Nitrogen, phosphorus and potassium contents of fruits of pitaya treated at different nitrogen levels in the first sampling period

      处理 Treatment N/(g·kg−1 P/(g·kg−1 K/(g·kg−1
      T0(0 kg·hm−2 11.16±1.15b 2.07±0.25b 13.33±0.98b
      T1(315 kg·hm−2 13.50±1.26a 2.52±0.26a 14.15±0.57ab
      T2(450 kg·hm−2 15.28±1.29a 2.39±0.21ab 14.39±0.72ab
      T3(585 kg·hm−2 13.49±0.60a 2.25±0.05ab 14.32±0.44ab
      T4(800 kg·hm−2 14.64±1.43a 2.52±0.09a 15.54±1.03a

      表3可知,第2次采样期,随着氮素水平的增加,火龙果果实中氮素含量呈现出逐渐增加的趋势,其中,T4处理氮素含量最高,为12.93 g·kg−1,T4,T3和T2处理均显著高于T0处理,分别较T0处理增加37.41%,27.74%,15.20%。随着氮素水平的增加,各处理果实中磷素含量呈现出先增加后降低的趋势,其中T3处理含量最高,为2.75 g·kg−1,显著高于T0处理,较T0处理增加了23.32%;T1,T2和T4处理分别较T0处理增加了5.38%,12.12%,11.21%,但T1,T2和T4处理与T0处理间无显著差异。随着氮素水平的增加,各处理果实中钾素含量呈现出先增加后降低的趋势,T1,T2,T3和T4处理中钾素含量均显著高于T0处理,分别较T0处理增加了8.10%,8.85%,10.35%和9.68%。T3处理钾素含量最高,为13.22 g·kg−1

      表 3  不同氮素水平下第2采样期火龙果果实氮磷钾含量

      Table 3.  Nitrogen, phosphorus and potassium contents of fruits of pitaya treated at different nitrogen levels in the second sampling period

      处理 Treatment N/(g·kg−1 P/(g·kg−1 K/(g·kg−1
      T0(0 kg·hm−2 9.41±1.12c 2.23±0.15b 11.98±0.44b
      T1(315 kg·hm−2 10.22±0.12bc 2.35±0.13b 12.95±0.21a
      T2(450 kg·hm−2 10.84±0.24b 2.50±0.22ab 13.04±0.16a
      T3(585 kg·hm−2 12.02±0.49a 2.75±0.05a 13.22±0.06a
      T4(800 kg·hm−2 12.93±0.13a 2.48±0.27ab 13.14±0.44a
    • 不同氮素水平对各处理火龙果果实品质的影响存在差异。由表4可知,第1次采样时,随着氮素水平的增加,各处理火龙果果实中可溶性糖和抗坏血酸含量呈现出先增加后降低的趋势,且各处理间差异显著。其中,T2处理可溶性糖和抗坏血酸含量均为最高,分别为7.08%和7.93 mg·kg−1,较T0处理分别增加了65.42%和65.43%。T1处理可溶性糖含量略高于T0处理,与T0处理差异不显著,T3和T4处理则显著小于T0处理。T1处理抗坏血酸含量显著高于T0处理,较T0处理增加了40.87%,而T3和T4处理均与T0处理差异不显著。各处理果实可食率,可溶性固形物和可滴定酸含量以及果形指数均差异不显著。

      表 4  不同氮素水平下第1采样期火龙果果实品质指标

      Table 4.  Quality index of pitaya fruit under treatments at different nitrogen levels in the first sampling period

      处理
      Treatment
      果实可食率
      Edible rate/%
      可溶性固形物/%
      Soluble solids
      可滴定酸/%
      Titrable acids
      可溶性糖/%
      Soluble sugar
      抗坏血酸/(mg·kg−1
      Ascorbic acid
      果形指数
      Fruit shape index
      T0 68.54±4.57a 18.56±0.10a 0.30±0.05a 4.28±0.94b 4.79±0.75c 1.28±0.05a
      T1 71.64±6.43a 19.11±1.69a 0.32±0.06a 4.29±0.92b 6.75±1.51b 1.31±0.08a
      T2 73.18±3.41a 19.16±0.82a 0.32±0.03a 7.08±1.64a 7.93±1.27a 1.29±0.04a
      T3 72.78±2.16a 18.41±1.06a 0.30±0.03a 2.78±2.81c 4.68±0.89c 1.30±0.06a
      T4 69.13±5.08a 18.11±1.17a 0.30±0.02a 2.18±1.91c 4.59±0.73c 1.34±0.08a

      表5可知,不同氮素水平下,各处理果实可食率,可溶性固形物,可滴定酸和可溶性糖含量均存在差异性,且随着氮素用量的增加呈现出先增加后降低的趋势。T2处理果实可食率,可滴定酸和可溶性糖含量均高于T0处理,分别为66.39%,0.46%和8.26%,分别较T0处理增加了6.62%,15%和3.64%。其中,果实可食率和可滴定酸含量显著高于T0处理。T1处理果实可食率显著高于T0处理,较T0处理增加了5.51%,可溶性固形物含量,可溶性糖和抗坏血酸含量均略高于T0处理,分别较T0处理增加了2.86%,1.63%和5.19%。T3,T4处理果实可溶性糖含量则显著小于T0处理,其余品质指标则与T0处理差异不显著。各处理在抗坏血酸含量和果形指数方面差异不显著。

      表 5  不同氮素水平下第2采样期火龙果果实品质指标

      Table 5.  Quality index of pitaya fruit under treatments at different nitrogen levels in the sampling period

      处理
      Treatment
      果实可食率/%
      Edible rate
      可溶性固形物/%
      Soluble solids
      可滴定酸/%
      Titrable acids
      可溶性糖/%
      Soluble sugar
      抗坏血酸/(mg·kg−1
      Ascrobic acid
      果形指数
      Fruit shape index
      T0 62.27±2.73b 18.55±1.08ab 0.40±0.10b 7.97±1.34a 4.34±1.04a 1.11±0.03a
      T1 65.70±3.88a 19.08±1.15a 0.37±0.07b 8.10±1.70a 4.56±0.69a 1.08±0.04a
      T2 66.39±1.77a 19.07±0.61a 0.46±0.05a 8.26±4.47a 4.58±0.64a 1.11±0.05a
      T3 64.14±2.10ab 18.70±0.78ab 0.41±0.06b 4.74±1.95b 4.30±0.43a 1.11±0.05a
      T4 64.95±1.56ab 17.99±0.79b 0.41±0.05b 4.55±2.43c 4.27±0.59a 1.13±0.05a
    • 本研究结果表明,施氮肥能够促进火龙果幼果的生长发育。与其他作物不同,火龙果每年可实现多批次收果,火龙果果实的生长周期在花后30~35 d。这一时期火龙果的口感最佳,营养物质含量稳定[10-11]。本研究中,花后27~32 d时,T1(低氮)处理火龙果横径显著或略高于T4(高氮)处理,说明在火龙果果实生长发育的后期,低氮条件就能够满足火龙果果实的生长需求,此时应追加高钾型肥料,从而提高果实品质。

      果实中氮、磷、钾含量是决定果实品质的主要因素。王晶晶等的研究表明,适宜氮肥用量会增加红枣中氮、磷、钾的含量,但氮肥用量过多则会产生相反的效应[12];聂大杭等的研究表明,番茄果实中氮磷钾含量随施氮量增加而增加[13];张绍铃的研究表明,高氮处理条件下会导致苹果果实糖度的下降[14];李兴忠等的研究表明,氮肥用量较低时,增施钾肥能够提高火龙果果实可溶性固形物含量[7];唐恒朋等认为,高氮条件下会降低火龙果果实中可溶性总糖和抗坏血酸含量[15]。本研究中,第1采样期火龙果果实中钾含量随施氮量的增加而增加,在第2次采样期间随施氮量的增加火龙果果实中氮含量逐渐增加,磷含量则先增加后降低,钾含量呈现出先增加后降低的趋势。各处理火龙果果实中钾素含量均高于氮磷含量,说明火龙果是高钾作物,在果实生长发育期间需要吸收大量的钾元素。本研究中,随施氮量的增加,火龙果果实中可溶性固形物,可滴定酸,可溶性糖和抗坏血酸等含量均呈现出先增加后降低的趋势。

      综上所述,合理控制氮肥用量能够促进火龙果果实生长发育,增加果实中氮、磷、钾含量,T2处理下火龙果果实中可溶性固形物,可溶性糖和抗坏血酸含量均达最大值,T4处理虽然果实氮磷钾含量较高,但却降低了果实品质。因此,果实生殖生长期氮肥用量以T2(450 kg·hm−2)处理较好。

参考文献 (15)

目录

    /

    返回文章
    返回