-
火龙果( Hylocereus undatus )原产中美洲热带地区,是仙人掌科(Cactaceae)量天尺属(Hylocereus)或蛇鞭柱属(Selenicereus)植物,喜光喜热。火龙果在我国的种植面积已达到6.7万公顷,在热区经济中已占有重要地位[1]。火龙果是长日照作物,在我国因冬季光照时长不足,不能开花,为此在生产上可采用夜晚补光的方式诱导火龙果开花结果。bHLH转录因子蛋白,包含1个碱性DNA结合区和1个螺旋-环-螺旋(HLH)区,能通过与顺式启动子元件相结合来调节基因表达,参与植物开花、种子发芽、矿质营养与非生物胁迫、应激反应、光信号、激素信号、光和植物激素之间的相互作用等多种生理过程[2]。
bHLH基因家族参与调控植物的开花调控,在拟南芥、番茄等植物中已有广泛的研究。在成花起始阶段,拟南芥的FBH蛋白(bHLH类型转录因子),可与光周期信号途径的关键基因CO (CONSTANS)启动子的E-box顺式元件结合,激活光周期开花基因的共转录[3]。在花发育阶段,与CIB1同源的bHLH蛋白,可以作为激活子直接促进成花素基因FT的转录[4]。bHLH家族的光敏色素互作因子PIFs可以与光信号直接作用,PIF3在光感受器信号网络中直接与光敏色素反应,PIF4在高温下直接激活成花素基因FT[5]。bHLH48和bHLH60与PIF7联合,可以作为赤霉素途径中的正调控因子,正调控GA介导的开花[6]。bHLH38/100/101会干扰CO的转录,调节FT的表达,进而影响拟南芥的开花[7]。bHLH基因家族成员SlbHLH22的过表达,会促进番茄早开花[8]。在茉莉酸途径中,JA激活的bHLH转录因子MYC2, MYC3和MYC4冗余调控拟南芥的开花[9]。拟南芥的bHLH家族基因BEE1具有诱导开花起始的功能,BES1-BEE1-FT可以调节光周期并与FT的激活因子CO互作来影响植物开花[10]。bHLH基因家族CRY2、CIB1可以响应蓝光,能将生物钟信号转化为开花信号,促进CO基因形成蛋白质复合物,诱导花的形成[11]。除了调节开花时间外,bHLH基因家族成员的SPT基因可以在花器官形成中起作用[12]。
目前,bHLH基因家族在拟南芥(Arabidopsis thaliana)[13]、小麦(Triticum aestivum L.)[14]、谷子(Setaria italica L.)[15]、烟草(Nicotiana tabacum L.)[16]、柚子(Citrus maxima)[17]等植物中进行了全基因组鉴定。火龙果作为一种重要的热带水果,有独特的开花习性,bHLH家族基因可能发挥重要作用,但目前还未见火龙果HubHLH基因家族相关系统分析的研究报道。火龙果(Hylocereus undatus)全基因组序列的发表,为鉴定火龙果HubHLH基因家族提供了条件[18]。本研究拟利用火龙果(Hylocereus undatus)基因组数据,对火龙果HubHLH转录因子家族进行全基因组筛选,并进行理化性质、系统进化、基因表达等方面的比较分析;利用火龙果补光诱导开花的转录组数据,研究HubHLH基因家族在火龙果冬季补光诱导开花过程的表达响应,旨在解析火龙果冬季补光诱导开花的分子机制。
Whole-genome analysis of the HubHLH gene family in Pitaya and its differential expression in response to supplementary light-induced flowering in winter
-
摘要: 为了获得较完整的候选基因,探讨HubHLH基因在火龙果( Hylocereus undatus )冬季补光诱导开花过程的表达响应,对火龙果HubHLH基因家族进行全基因组分析。鉴定出153个HubHLH基因;这些基因的编码蛋白含有176~687个氨基酸,分子量大小为19.28~74.44 kDa ,等电点(pI)为4.81~9.88,均为亲水蛋白,亚细胞定位预测大多定位到细胞核。为鉴定HubHLH基因家族的同源性,本研究将153个火龙果HubHLH和120个拟南芥AtbHLH蛋白进行系统发育比较分析。系统发育比较分析结果:火龙果HubHLH基因家族成员被分为12个组,25个亚族;对HubHLH基因家族的保守motif、基因结构及在染色体的位置分布的分析结果表明,同一亚族的基因具有相似的基序组成和基因结构。对HubHLH基因家族的内部复制事件的分析结果表明,有78条片段复制被鉴定为片段重复基因,说明片段复制是HubHLH基因家族的主要扩张力量。此外,基于已测定的关于火龙果冬季补光诱导开花的4个时期转录组数据,筛选到59个HubHLH基因在冬季补光诱导成花过程中有差异表达,随后对这59个HubHLH基因进行GO功能富集,发现它们在红光或远红光的反应、对光刺激的反应、有性生殖功能、对辐射的反应等功能上均有富集,说明HubHLH基因家族可能在冬季补光诱导火龙果成花过程中起到了调控作用。Abstract: In order to obtain relative complete candidate genes, the HubHLH gene expression response in Pitaya during the flowering process induced by supplementary light in winter was investigated, and the whole genome of HubHLH gene family in Pitaya was analyzed. There were 153 pitaya HubHLH genes identified, and their encoding proteins contained 176-687 amino acids with their molecular weight being 19.28 – 74.44 kDa, pI 4.81-9.88. These proteins were all hydrophilic. The prediction of subcellular localization showed that most of the proteins were localized in the nucleus. The pitaya HubHLH proteins were compared with 120 Arabidopsis AtbHLH proteins for phylogenetic analysis. Phylogenetic analysis showed that the pitaya HubHLH proteins were divided into 12 groups and 25 subfamilies. Analysis of conserved motif, gene structure and location distribution in chromosomes showed that genes of the same subfamily had similar motif composition and gene structure. Analysis of the internal replication events of the pitaya HubHLH gene family found that 78 genes were identified as fragment repeating genes, indicating that fragment replication was the main expansion force of the pitaya HubHLH gene family. In addition, based on the transcriptomic data of the four phases of supplementary light-induced flowering of Pitaya in winter, 59 HubHLH genes were differentially expressed during the process of supplementary light induced flowering in winter. GO function enrichment showed that they were enriched in response to red or far-red light, light stimulation, sexual reproduction function, and radiation. The HubHLH gene family may play a regulatory role in the flowering process of Pitaya induced by supplementary light in winter. In this study, we conducted a comprehensive genome analysis of the HubHLH gene family in Pitaya, obtained relatively complete candidate genes, and preliminarily investigated the expression response of HubHLH genes in the winter flowering process induced by supplementary light in Pitaya.
-
-
[1] 刘成立, 王猛, 郭攀阳, 等. 火龙果花和果实的动态发育规律研究[J]. 海南大学学报(自然科学版), 2020, 38(2): 147 − 152. doi: 10.15886/j.cnki.hdxbzkb.2020.0021 [2] HAO Y, ZONG X, REN P, et al. Basic helix-loop-helix (bHLH) transcription factors regulate a wide range of functions in Arabidopsis[J]. Int J Mol Sci, 2021, 22(13): 7152. doi: 10.3390/ijms22137152 [3] ITO S, SONG Y H, JOSEPHSON-DAY A R, et al. FLOWERING BHLH transcriptional activators control expression of the photoperiodic flowering regulator CONSTANS in Arabidopsis[J]. Proc Natl Acad Sci U S A, 2012, 109(9): 3582 − 3587. doi: 10.1073/pnas.1118876109 [4] LIU H, YU X, LI K, et al. Photoexcited CRY2 interacts with CIB1 to regulate transcription and floral initiation in Arabidopsis[J]. Science, 2008, 322(5907): 1535 − 1539. doi: 10.1126/science.1163927 [5] KUMAR S V, LUCYSHYN D, JAEGER K E, et al. Transcription factor PIF4 controls the thermosensory activation of flowering[J]. Nature, 2012, 484(7393): 242 − 245. doi: 10.1038/nature10928 [6] LI Y, WANG H, LI X, et al. Two DELLA-interacting proteins bHLH48 and bHLH60 regulate flowering under long-day conditions in Arabidopsis thaliana[J]. J Exp Bot, 2017, 68(11): 2757 − 2767. doi: 10.1093/jxb/erx143 [7] CHEN W, ZHAO L, LIU L, et al. Iron deficiency-induced transcription factors bHLH38/100/101 negatively modulate flowering time in Arabidopsis thaliana[J]. Plant Sci, 2021, 308: 110929. doi: 10.1016/j.plantsci.2021.110929 [8] WASEEM M, LI N, SU D, et al. Overexpression of a basic helix-loop-helix transcription factor gene, SlbHLH22, promotes early flowering and accelerates fruit ripening in tomato (Solanum lycopersicum L.)[J]. Planta, 2019, 250(1): 173 − 185. doi: 10.1007/s00425-019-03157-8 [9] WANG H, LI Y, PAN J, et al. The bHLH Transcription Factors MYC2, MYC3, and MYC4 are required for jasmonate-mediated inhibition of flowering in Arabidopsis[J]. Mol Plant, 2017, 10(11): 1461 − 1464. doi: 10.1016/j.molp.2017.08.007 [10] WANG F, GAO Y, LIU Y, et al. BES1-regulated BEE1 controls photoperiodic flowering downstream of blue light signaling pathway in Arabidopsis[J]. New Phytol, 2019, 223(3): 1407 − 1419. doi: 10.1111/nph.15866 [11] LIU Y, LI X, MA D, et al. CIB1 and CO interact to mediate CRY2-dependent regulation of flowering[J]. EMBO Rep, 2018, 19(10): e45762. doi: 10.15252/embr.201845762 [12] REYMOND M C, BRUNOUD G, CHAUVET A, et al. A light-regulated genetic module was recruited to carpel development in Arabidopsis following a structural change to SPATULA[J]. Plant Cell, 2012, 24(7): 2812 − 2825. doi: 10.1105/tpc.112.097915 [13] HEIM M A, JAKOBY M, WERBER M, et al. The basic helix-loop-helix transcription factor family in plants: a genome-wide study of protein structure and functional diversity[J]. Mol Biol Evol, 2003, 20(5): 735 − 747. doi: 10.1093/molbev/msg088 [14] GUO X J, WANG J R. Global identification, structural analysis and expression characterization of bHLH transcription factors in wheat[J]. BMC Plant Biol, 2017, 17(1): 90. doi: 10.1186/s12870-017-1038-y [15] FAN Y, LAI D, YANG H, et al. Genome-wide identification and expression analysis of the bHLH transcription factor family and its response to abiotic stress in foxtail millet (Setaria italica L.)[J]. BMC Genomics, 2021, 22(1): 778. doi: 10.1186/s12864-021-08095-y [16] BANO N, PATEL P, CHAKRABARTY D, et al. Genome-wide identification, phylogeny, and expression analysis of the bHLH gene family in tobacco (Nicotiana tabacum)[J]. Physiol Mol Biol Plants, 2021, 27(8): 1747 − 1764. doi: 10.1007/s12298-021-01042-x [17] ZHANG X Y, QIU J Y, HUI Q L, et al. Systematic analysis of the basic/helix-loop-helix (bHLH) transcription factor family in pummelo (Citrus grandis) and identification of the key members involved in the response to iron deficiency[J]. BMC Genomics, 2020, 21(1): 233. doi: 10.1186/s12864-020-6644-7 [18] CHEN J Y, XIE F F, CUI Y Z, et al. A chromosome-scale genome sequence of pitaya (Hylocereus undatus) provides novel insights into the genome evolution and regulation of betalain biosynthesis[J]. Horticulture Research, 2021, 8: 164. doi: 10.1038/s41438-021-00612-0 [19] DUVAUD S, GABELLA C, LISACEK F, et al. Expasy, the Swiss Bioinformatics Resource Portal, as designed by its users[J]. Nucleic Acids Research, 2021, 49(W1): W216 − W227. doi: 10.1093/nar/gkab225 [20] CHOU K C, SHEN H B. Plant-mPLoc: a top-down strategy to augment the power for predicting plant protein subcellular localization[J]. PLoS One, 2010, 5(6): e11335. doi: 10.1371/journal.pone.0011335 [21] CROOKS G E, HON G, CHANDONIA J M, et al. Weblogo: a sequence logo generator[J]. Genome Research, 2004, 14(6): 1188 − 1190. doi: 10.1101/gr.849004 [22] LETUNIC I, BORK P. Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display and annotation[J]. Bioinformatics, 2007, 23(1): 127 − 128. doi: 10.1093/nar/gkab301 [23] CHEN C, CHEN H, ZHANG Y, et al. TBtools: An integrative toolkit developed for interactive analyses of big biological data[J]. Molecular Plant, 2020, 13(8): 1194 − 1202. doi: 10.1016/j.molp.2020.06.009 [24] XIONG R, LIU C, XU M, et al. Transcriptomic analysis of flower induction for long-day pitaya by supplementary lighting in short-day winter season[J]. BMC Genomics, 2020, 21(1): 329. doi: 10.1186/s12864-020-6726-6 [25] MOHAMMAD A, HASSAN J B, BEENISH F, et al. Genome-wide study of pineapple (Ananas comosus L.) bHLH transcription factors indicates that cryptochrome-interacting bHLH2 (AcCIB2) participates in flowering time regulation and abiotic stress response[J]. BMC Genomics, 2020, 21(1): 735. doi: 10.1186/s12864-020-07152-2 [26] WANG Z, JIA C, WANG J, et al. Genome-wide analysis of basic Helix-loop-Helix transcription factors to elucidate candidate genes related to fruit ripening and stress in banana (Musa acuminata L. AAA group, cv. Cavendish)[J]. Front Plant Sci, 2020, 11: 650. doi: 10.3389/fpls.2020.00650 [27] AN F, XIAO X, CHEN T, et al. Systematic analysis of bHLH transcription factors in cassava uncovers their roles in postharvest physiological deterioration and cyanogenic glycosides biosynthesis[J]. Frontiers in Plant Science, 2022, 13: 901128. doi: 10.3389/fpls.2022.901128 [28] TOLEDO-ORTIZ G, HUQ E, QUAIL P H. The Arabidopsis basic/Helix-loop-Helix transcription factor family[J]. The Plant Cell, 2003, 15(8): 1749 − 1770. doi: 10.1105/tpc.013839 [29] HAO Y, OH E, CHOI G, et al. Interactions between HLH and bHLH factors modulate light-regulated plant development[J]. Molecular Plant, 2012, 5(3): 688 − 697. doi: 10.1093/mp/sss011 [30] SHARMA N, XIN R, KIM D H, et al. NO FLOWERING IN SHORT DAY (NFL) is a bHLH transcription factor that promotes flowering specifically under short-day in Arabidopsis[J]. Development, 2016, 143(4): 682 − 690. [31] WU M, UPRETI S, YAN A, et al. SPATULA regulates floral transition and photomorphogenesis in a PHYTOCHROME B-dependent manner in Arabidopsis[J]. Biochemical and Biophysical Research Communications, 2018, 503(4): 2380 − 2385. doi: 10.1016/j.bbrc.2018.06.165