留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

橘小实蝇抗菌肽全基因组鉴定和表达模式分析

张小枫 苏禹 董欣怡 刘月茹 周洪旭 范银君

张小枫, 苏禹, 董欣怡, 刘月茹, 周洪旭, 范银君. 橘小实蝇抗菌肽全基因组鉴定和表达模式分析[J]. 热带生物学报, 2024, 15(6): 672-682. doi: 10.15886/j.cnki.rdswxb.20240130
引用本文: 张小枫, 苏禹, 董欣怡, 刘月茹, 周洪旭, 范银君. 橘小实蝇抗菌肽全基因组鉴定和表达模式分析[J]. 热带生物学报, 2024, 15(6): 672-682. doi: 10.15886/j.cnki.rdswxb.20240130
ZHANG Xiaofeng, SU Yu, DONG Xinyi, LIU Yueru, ZHOU Hongxu, FAN Yinjun. Genome-wide identification and expression-profiling analysis of the antimicrobial peptide genes in Bactrocera dorsalis(Hendel)[J]. Journal of Tropical Biology, 2024, 15(6): 672-682. doi: 10.15886/j.cnki.rdswxb.20240130
Citation: ZHANG Xiaofeng, SU Yu, DONG Xinyi, LIU Yueru, ZHOU Hongxu, FAN Yinjun. Genome-wide identification and expression-profiling analysis of the antimicrobial peptide genes in Bactrocera dorsalis(Hendel)[J]. Journal of Tropical Biology, 2024, 15(6): 672-682. doi: 10.15886/j.cnki.rdswxb.20240130

橘小实蝇抗菌肽全基因组鉴定和表达模式分析

doi: 10.15886/j.cnki.rdswxb.20240130
基金项目: 

国家自然科学基金青年项目(32102250)

山东省自然科学基金青年项目(ZR2021QC017)

国家级大学生创新创业训练计划项目(202410435038)

详细信息
    第一作者:

    张小枫(2003-),女,青岛农业大学植物医学学院2021级本科生。E-mail:1075105209@qq.com

    通信作者:

    范银君(1989-),女,博士,讲师。研究方向:昆虫毒理与入侵生物学。E-mail:fanyinjun89@126.com

  • 中图分类号: S435.1

Genome-wide identification and expression-profiling analysis of the antimicrobial peptide genes in Bactrocera dorsalis(Hendel)

  • 摘要: 基于橘小实蝇染色体水平的基因组数据,运用生物信息学方法,深入分析橘小实蝇抗菌肽基因的组成、结构特征及它们在昆虫间的系统进化关系;使用荧光定量PCR技术,分析橘小实蝇抗菌肽基因在橘小实蝇4个不同发育阶段及成虫的6个部位的表达谱。研究结果表明,橘小实蝇基因组存在3大类共29个抗菌肽基因,包括12个cecropins,11个defensins,4个attacins和2个diptericins。基因组和蛋白结构表明橘小实蝇抗菌肽分子和结构具有显著的多样性,包括基因复制过程;表达谱分析表明,大多数抗菌肽在蛹期和成虫期表达水平较高,且在不同部位中,不同类型抗菌肽的表达特征差异较大;此外,除了在血淋巴中的广泛表达外,某些抗菌肽基因在头和体壁中也有特定表达。上述结果为进一步研究橘小实蝇抗菌肽的功能提供了数据库和信息。
  • [1] BASSET Y, CIZEK L, CUÉNOUD P, et al. Arthropod diversity in a tropical forest[J]. Science, 2012, 338(6113):1481-1484.
    [2] BUONOCORE F, FAUSTO A M, DELLA PELLE G, et al.Attacins:a promising class of insect antimicrobial peptides[J]. Antibiotics, 2021, 10(2):212.
    [3] WU Q, PATOČKA J, KUČA K. Insect antimicrobial peptides, a mini review[J]. Toxins, 2018, 10(11):461.
    [4] HANSON M A, LEMAITRE B, UNCKLESS R L. Dynamic evolution of antimicrobial peptides underscores trade-offs between immunity and ecological fitness[J]. Frontiers in Immunology, 2019, 10:2620.
    [5] MANNIELLO M D, MORETTA A, SALVIA R, et al.Insect antimicrobial peptides:potential weapons to counteract the antibiotic resistance[J]. Cellular and Molecular Life Sciences, 2021, 78(9):4259-4282.
    [6] STEINER H, HULTMARK D, ENGSTRÖMÅ, et al.Sequence and specificity of two antibacterial proteins involved in insect immunity[J]. Nature, 1981, 292:246-248.
    [7] HE Y, CAO X, LI K, et al. A genome-wide analysis of antimicrobial effector genes and their transcription patterns in Manduca sexta[J]. Insect Biochemistry and Molecular Biology, 2015, 62:23-37.
    [8] BUONOCORE F, FAUSTO A M, DELLA PELLE G, et al.Attacins:a promising class of insect antimicrobial peptides[J]. Antibiotics, 2021, 10(2):212.
    [9] YI H Y, CHOWDHURY M, HUANG Y D, et al. Insect antimicrobial peptides and their applications[J]. Applied Microbiology and Biotechnology, 2014, 98(13):5807-5822.
    [10] CLARKE A R, ARMSTRONG K F, CARMICHAEL A E,et al. Invasive phytophagous pests arising through a recent tropical evolutionary radiation:the Bactrocera dorsalis complex of fruit flies[J]. Annual Review of Entomology, 2005, 50:293-319.
    [11] 张杰,张艳,刘伟,等.橘小实蝇化学通讯机制与引诱剂开发策略[J].昆虫学报, 2023, 66(1):108-120.
    [12] ZHAO Z, CAREY J R, LI Z. The global epidemic of Bactrocera pests:mixed-species invasions and risk assessment[J].Annual Review of Entomology, 2024, 69:219-237.
    [13] NUGNES F, RUSSO E, VIGGIANI G, et al. First record of an invasive fruit fly belonging to Bactrocera dorsalis complex (Diptera:Tephritidae) in Europe[J]. Insects,2018, 9(4):182.
    [14] ZHU Y F, TAN X M, QI F J, et al. The host shift of Bactrocera dorsalis:early warning of the risk of damage to the fruit industry in Northern China[J]. Entomologia Generalis, 2022, 42(5):691-699.
    [15] JIANG F, LIANG L, WANG J, et al. Chromosome-level genome assembly of Bactrocera dorsalis reveals its adaptation and invasion mechanisms[J]. Communications Biology, 2022, 5:25.
    [16] DANG X L, TIAN J H, YANG W Y, et al. Bactrocerin-1:a novel inducible antimicrobial peptide from pupae of oriental fruit fly Bactrocera dorsalis Hendel[J]. Archives of Insect Biochemistry and Physiology, 2009, 71(3):117-129.
    [17] LIAO Y Y, ZUO Y H, TSAI C L, et al. Cdna cloning and transcriptional regulation of the cecropin and attacin from the oriental fruit fly, bactrocera dorsalis (Diptera:Tephritidae)[J]. Archives of Insect Biochemistry and Physiology, 2015, 89(2):111-126.
    [18] LIU S H, WEI D, YUAN G R, et al. Antimicrobial peptide gene cecropin-2 and defensin respond to peptidoglycan infection in the female adult of oriental fruit fly, Bactrocera dorsalis (Hendel)[J]. Comparative Biochemistry and Physiology Part B, Biochemistry&Molecular Biology, 2017, 206:1-7.
    [19] PETERSEN T N, BRUNAK S, VON HEIJNE G, et al. Signal P 4.0:discriminating signal peptides from transmembrane regions[J]. Nature Methods, 2011, 8:785-786.
    [20] QI S, GAO B, ZHU S. Molecular diversity and evolution of antimicrobial peptides in Musca domestica[J]. Diversity, 2021, 13(3):107.
    [21] ELEFTHERIANOS I, ZHANG W, HERYANTO C, et al.Diversity of insect antimicrobial peptides and proteins-A functional perspective:a review[J]. International Journal of Biological Macromolecules, 2021, 191:277-287.
    [22] YASHWANT R S, THOMAS D S, MANOHARAN C, et al. Inducible overexpression of cecropin B decreases the susceptibility of the transgenic silkworm, Bombyx mori (Lepidoptera:Bombycidae), to bacteria[J]. Applied Entomology and Zoology, 2023, 58(1):85-92.
    [23] YI H Y, CHOWDHURY M, HUANG Y D, et al. Insect antimicrobial peptides and their applications[J]. Applied Microbiology and Biotechnology, 2014, 98(13):5807-5822.
    [24] KIM S R, HONG M Y, PARK S W, et al. Characterization and cDNA cloning of a cecropin-like antimicrobial peptide, papiliocin, from the swallowtail butterfly,Papilio xuthus[J]. Molecules and Cells, 2010, 29(4):419-423.
    [25] VIZIOLI J, BULET P, CHARLET M, et al. Cloning and analysis of a cecropin gene from the malaria vector mosquito, Anopheles gambiae[J]. Insect Molecular Biology,2000, 9(1):75-84.
    [26] GUO L, TANG M, LUO S, et al. Screening and functional analyses of novel cecropins from insect transcriptome[J].Insects, 2023, 14(10):794.
    [27] QUESADA H, RAMOS-ONSINS S E, AGUADÉM.Birth-and-death evolution of the cecropin multigene family in Drosophila[J]. Journal of Molecular Evolution,2005, 60(1):1-11.
    [28] WU Q, PATOČKA J, KUČA K. Insect antimicrobial peptides, a mini review[J]. Toxins, 2018, 10(11):461.
    [29] WEN H, LAN X, CHENG T, et al. Sequence structure and expression pattern of a novel anionic defensin-like gene from silkworm (Bombyx mori)[J]. Molecular Biology Reports, 2009, 36(4):711-716.
    [30] DIMARCQ J L, HOFFMANN D, MEISTER M, et al.Characterization and transcriptional profiles of a Drosophila gene encoding an insect defensin. A study in insect immunity[J]. European Journal of Biochemistry,1994, 221(1):201-209.
    [31] SUGIYAMA M, KUNIYOSHI H, KOTANI E, et al. Characterization of a Bombyx mori cDNA encoding a novel member of the attacin family of insect antibacterial proteins[J]. Insect Biochemistry and Molecular Biology,1995, 25(3):385-392.
    [32] GUNNE H, HELLERS M, STEINER H. Structure of preproattacin and its processing in insect cells infected with a recombinant baculovirus[J]. European Journal of Biochemistry, 1990, 187(3):699-703.
    [33] KESHAVARZ M, ZANCHI C, ROLFF J. The effect of combined knockdowns of Attacins on survival and bacterial load in Tenebrio molitor[J]. Frontiers in Immunology,2023, 14:1140627.
    [34] DIMARCQ J L, KEPPI E, DUNBAR B, et al. Insect immunity. Purification and characterization of a family of novel inducible antibacterial proteins from immunized larvae of the dipteran Phormia terranovae and complete amino-acid sequence of the predominant member, diptericin A[J]. European Journal of Biochemistry, 1988,171(1/2):17-22.
    [35] WICKER C, REICHHART J M, HOFFMANN D, et al.Insect immunity. Characterization of a Drosophila cDNA encoding a novel member of the diptericin family of immune peptides[J]. The Journal of Biological Chemistry, 1990, 265(36):22493-22498.
    [36] ISHIKAWA M, KUBO T, NATORI S. Purification and characterization of a diptericin homologue from Sarcophaga peregrina (flesh fly)[J]. The Biochemical Journal, 1992, 287(Pt 2):573-578.
  • [1] 霍宝伟, 袁诗薇, 叶福宇, 杜素洁, 万伟杰, 郭建洋, 万方浩, 周洪旭, 刘万学.  宁夏地区潜叶蝇种类和危害程度及其天敌寄生蜂调查 . 热带生物学报, 2025, 16(): 1-7. doi: 10.15886/j.cnki.rdswxb.20240190
    [2] 彭晓莹, 金海峰, 闫文乾, 咸利民, 席羽, 张宝琴.  三叶草斑潜蝇过氧化氢酶基因的克隆、表达及其对温度的响应 . 热带生物学报, 2025, 16(): 1-10. doi: 10.15886/j.cnki.rdswxb.20240033
    [3] 宋喆, 曹凤勤, 温健, 林先武, 颜日辉.  瓜实蝇活体胚胎内部发育及发育阶段研究 . 热带生物学报, 2025, 16(2): 196-205. doi: 10.15886/j.cnki.rdswxb.20240005
    [4] 莫武, 龚治, 易克贤.  桔小实蝇种群动态及其与气象因子的相关性分析 . 热带生物学报, 2025, 16(): 1-6. doi: 10.15886/j.cnki.rdswxb.20240084
    [5] 刘佳莹, 张杰, 王齐, 吴少英, 王桂荣, 刘伟.  橘小实蝇四种泛神经元表达基因的鉴定和分析 . 热带生物学报, 2025, 16(): 1-14. doi: 10.15886/j.cnki.rdswxb.20240158
    [6] 黄晓欣, 谈嘉莉, 杨永星, 顾哲铭, 李雪珽, 雷晓凌.  耐热真菌HS1-1的生理特性和抗菌活性 . 热带生物学报, 2023, 14(5): 552-559. doi: 10.15886/j.cnki.rdswxb.20220047
    [7] 李飞航, 武浩恒, 李宏, 李娟娟, 马香, 唐燕琼, 刘柱.  抗菌肽Cathelicidin-1真核表达及发酵液抑菌活性鉴定 . 热带生物学报, 2023, 14(5): 474-480. doi: 10.15886/j.cnki.rdswxb.20230010
    [8] 刘双龙, 杨德洁, 牛晓庆, 杨福孙, 覃伟权.  槟榔根腐病菌拮抗菌株的筛选与鉴定 . 热带生物学报, 2022, 13(3): 235-242. doi: 10.15886/j.cnki.rdswxb.2022.03.005
    [9] 云莉, 倪雅丽.  茴香醛对变异链球菌的抗菌活性和抗生物被膜活性 . 热带生物学报, 2022, 13(6): 614-621. doi: 10.15886/j.cnki.rdswxb.2022.06.011
    [10] 张忠辉, 邓渊, 强奇, 陈日东, 杨君, 刘贤青, 王守创, 袁潜华, 罗杰, 罗越华.  基于高效液相色谱-质谱联用技术解析山栏稻营养品质的代谢物谱 . 热带生物学报, 2021, 12(4): 419-427. doi: 10.15886/j.cnki.rdswxb.2021.04.003
    [11] 李妙珍, 李奕勋, 陈静, 张磊, 廖承红, 韩谦.  伊蚊5-HT受体家族生物信息学分析和时空表达谱的构建 . 热带生物学报, 2021, 12(3): 347-355. doi: 10.15886/j.cnki.rdswxb.2021.03.011
    [12] 胡世康, 王博, 秦海鹏, 廖栩峥, 孙成波, 刘永胜, 曲朋.  抗菌肽对凡纳滨对虾抗病性和免疫指标的影响 . 热带生物学报, 2018, 9(3): 281-286. doi: 10.15886/j.cnki.rdswxb.2018.03.003
    [13] 王晓珊, 吴先辉, 庞杰, 袁毅, 龚静妮, 王林.  刺云实胶对魔芋葡甘聚糖分子链拓扑缠结的分析 . 热带生物学报, 2017, 8(3): 335-340. doi: 10.15886/j.cnki.rdswxb.2017.03.014
    [14] 黄建初, 谢丙清, 李崇高, 庞杰, 郭雅妮.  魔芋葡甘聚糖与丝素肽的溶胶特性 . 热带生物学报, 2016, 7(4): 472-476. doi: 10.15886/j.cnki.rdswxb.2016.04.017
    [15] 王乐乐, 李明芳, 刘兴地, 郑学勤.  小桐子SSR-PCR反应体系的优化 . 热带生物学报, 2015, 6(4): 478-484. doi: 10.15886/j.cnki.rdswxb.2015.04.019
    [16] 苑惠惠, 刘保东.  多羽实蕨配子体发育的新观察 . 热带生物学报, 2014, 5(1): 43-47. doi: 10.15886/j.cnki.rdswxb.2014.01.002
    [17] 赵光军, 周永灿, 杨慧, 蔡岩, 张晗, 谢珍玉, 王世锋, 李聪.  罗非鱼无乳链球菌拮抗菌的分离、鉴定及多样性分析 . 热带生物学报, 2014, 5(4): 312-319,356. doi: 10.15886/j.cnki.rdswxb.2014.04.002
    [18] 孙亮, 刘文波, 杨廷雅, 和虹宇, 邬国良, 张宇, 缪卫国, 郑服丛.  枯草芽孢杆菌HAB-1产生抗菌物质的最优发酵条件 . 热带生物学报, 2013, 4(3): 225-231,235. doi: 10.15886/j.cnki.rdswxb.2013.03.007
    [19] 彭军, 黄俊生.  植物内源小RNA及其介导的基因沉默途径 . 热带生物学报, 2011, 2(2): 187-192. doi: 10.15886/j.cnki.rdswxb.2011.02.002
    [20] 于文媛, 王世锋, 谢珍玉, 陈诏, 周永灿.  合浦珠母贝抗菌肽粗提液制备方法的优化 . 热带生物学报, 2011, 2(1): 14-20. doi: 10.15886/j.cnki.rdswxb.2011.01.016
  • 加载中
  • 计量
    • 文章访问数:  18
    • HTML全文浏览量:  3
    • PDF下载量:  0
    • 被引次数: 0
    出版历程
    • 收稿日期:  2024-08-12
    • 修回日期:  2024-08-25

    橘小实蝇抗菌肽全基因组鉴定和表达模式分析

    doi: 10.15886/j.cnki.rdswxb.20240130
      基金项目:

      国家自然科学基金青年项目(32102250)

      山东省自然科学基金青年项目(ZR2021QC017)

      国家级大学生创新创业训练计划项目(202410435038)

      作者简介:

      张小枫(2003-),女,青岛农业大学植物医学学院2021级本科生。E-mail:1075105209@qq.com

      通讯作者: 范银君(1989-),女,博士,讲师。研究方向:昆虫毒理与入侵生物学。E-mail:fanyinjun89@126.com
    • 中图分类号: S435.1

    摘要: 基于橘小实蝇染色体水平的基因组数据,运用生物信息学方法,深入分析橘小实蝇抗菌肽基因的组成、结构特征及它们在昆虫间的系统进化关系;使用荧光定量PCR技术,分析橘小实蝇抗菌肽基因在橘小实蝇4个不同发育阶段及成虫的6个部位的表达谱。研究结果表明,橘小实蝇基因组存在3大类共29个抗菌肽基因,包括12个cecropins,11个defensins,4个attacins和2个diptericins。基因组和蛋白结构表明橘小实蝇抗菌肽分子和结构具有显著的多样性,包括基因复制过程;表达谱分析表明,大多数抗菌肽在蛹期和成虫期表达水平较高,且在不同部位中,不同类型抗菌肽的表达特征差异较大;此外,除了在血淋巴中的广泛表达外,某些抗菌肽基因在头和体壁中也有特定表达。上述结果为进一步研究橘小实蝇抗菌肽的功能提供了数据库和信息。

    English Abstract

    张小枫, 苏禹, 董欣怡, 刘月茹, 周洪旭, 范银君. 橘小实蝇抗菌肽全基因组鉴定和表达模式分析[J]. 热带生物学报, 2024, 15(6): 672-682. doi: 10.15886/j.cnki.rdswxb.20240130
    引用本文: 张小枫, 苏禹, 董欣怡, 刘月茹, 周洪旭, 范银君. 橘小实蝇抗菌肽全基因组鉴定和表达模式分析[J]. 热带生物学报, 2024, 15(6): 672-682. doi: 10.15886/j.cnki.rdswxb.20240130
    ZHANG Xiaofeng, SU Yu, DONG Xinyi, LIU Yueru, ZHOU Hongxu, FAN Yinjun. Genome-wide identification and expression-profiling analysis of the antimicrobial peptide genes in Bactrocera dorsalis(Hendel)[J]. Journal of Tropical Biology, 2024, 15(6): 672-682. doi: 10.15886/j.cnki.rdswxb.20240130
    Citation: ZHANG Xiaofeng, SU Yu, DONG Xinyi, LIU Yueru, ZHOU Hongxu, FAN Yinjun. Genome-wide identification and expression-profiling analysis of the antimicrobial peptide genes in Bactrocera dorsalis(Hendel)[J]. Journal of Tropical Biology, 2024, 15(6): 672-682. doi: 10.15886/j.cnki.rdswxb.20240130
    参考文献 (36)

    目录

      /

      返回文章
      返回