[1] |
刘成立, 王猛, 郭攀阳, 等. 火龙果花和果实的动态发育规律研究[J]. 海南大学学报(自然科学版), 2020, 38(2): 147 − 152. doi: 10.15886/j.cnki.hdxbzkb.2020.0021 |
[2] |
HAO Y, ZONG X, REN P, et al. Basic helix-loop-helix (bHLH) transcription factors regulate a wide range of functions in Arabidopsis[J]. Int J Mol Sci, 2021, 22(13): 7152. doi: 10.3390/ijms22137152 |
[3] |
ITO S, SONG Y H, JOSEPHSON-DAY A R, et al. FLOWERING BHLH transcriptional activators control expression of the photoperiodic flowering regulator CONSTANS in Arabidopsis[J]. Proc Natl Acad Sci U S A, 2012, 109(9): 3582 − 3587. doi: 10.1073/pnas.1118876109 |
[4] |
LIU H, YU X, LI K, et al. Photoexcited CRY2 interacts with CIB1 to regulate transcription and floral initiation in Arabidopsis[J]. Science, 2008, 322(5907): 1535 − 1539. doi: 10.1126/science.1163927 |
[5] |
KUMAR S V, LUCYSHYN D, JAEGER K E, et al. Transcription factor PIF4 controls the thermosensory activation of flowering[J]. Nature, 2012, 484(7393): 242 − 245. doi: 10.1038/nature10928 |
[6] |
LI Y, WANG H, LI X, et al. Two DELLA-interacting proteins bHLH48 and bHLH60 regulate flowering under long-day conditions in Arabidopsis thaliana[J]. J Exp Bot, 2017, 68(11): 2757 − 2767. doi: 10.1093/jxb/erx143 |
[7] |
CHEN W, ZHAO L, LIU L, et al. Iron deficiency-induced transcription factors bHLH38/100/101 negatively modulate flowering time in Arabidopsis thaliana[J]. Plant Sci, 2021, 308: 110929. doi: 10.1016/j.plantsci.2021.110929 |
[8] |
WASEEM M, LI N, SU D, et al. Overexpression of a basic helix-loop-helix transcription factor gene, SlbHLH22, promotes early flowering and accelerates fruit ripening in tomato (Solanum lycopersicum L.)[J]. Planta, 2019, 250(1): 173 − 185. doi: 10.1007/s00425-019-03157-8 |
[9] |
WANG H, LI Y, PAN J, et al. The bHLH Transcription Factors MYC2, MYC3, and MYC4 are required for jasmonate-mediated inhibition of flowering in Arabidopsis[J]. Mol Plant, 2017, 10(11): 1461 − 1464. doi: 10.1016/j.molp.2017.08.007 |
[10] |
WANG F, GAO Y, LIU Y, et al. BES1-regulated BEE1 controls photoperiodic flowering downstream of blue light signaling pathway in Arabidopsis[J]. New Phytol, 2019, 223(3): 1407 − 1419. doi: 10.1111/nph.15866 |
[11] |
LIU Y, LI X, MA D, et al. CIB1 and CO interact to mediate CRY2-dependent regulation of flowering[J]. EMBO Rep, 2018, 19(10): e45762. doi: 10.15252/embr.201845762 |
[12] |
REYMOND M C, BRUNOUD G, CHAUVET A, et al. A light-regulated genetic module was recruited to carpel development in Arabidopsis following a structural change to SPATULA[J]. Plant Cell, 2012, 24(7): 2812 − 2825. doi: 10.1105/tpc.112.097915 |
[13] |
HEIM M A, JAKOBY M, WERBER M, et al. The basic helix-loop-helix transcription factor family in plants: a genome-wide study of protein structure and functional diversity[J]. Mol Biol Evol, 2003, 20(5): 735 − 747. doi: 10.1093/molbev/msg088 |
[14] |
GUO X J, WANG J R. Global identification, structural analysis and expression characterization of bHLH transcription factors in wheat[J]. BMC Plant Biol, 2017, 17(1): 90. doi: 10.1186/s12870-017-1038-y |
[15] |
FAN Y, LAI D, YANG H, et al. Genome-wide identification and expression analysis of the bHLH transcription factor family and its response to abiotic stress in foxtail millet (Setaria italica L.)[J]. BMC Genomics, 2021, 22(1): 778. doi: 10.1186/s12864-021-08095-y |
[16] |
BANO N, PATEL P, CHAKRABARTY D, et al. Genome-wide identification, phylogeny, and expression analysis of the bHLH gene family in tobacco (Nicotiana tabacum)[J]. Physiol Mol Biol Plants, 2021, 27(8): 1747 − 1764. doi: 10.1007/s12298-021-01042-x |
[17] |
ZHANG X Y, QIU J Y, HUI Q L, et al. Systematic analysis of the basic/helix-loop-helix (bHLH) transcription factor family in pummelo (Citrus grandis) and identification of the key members involved in the response to iron deficiency[J]. BMC Genomics, 2020, 21(1): 233. doi: 10.1186/s12864-020-6644-7 |
[18] |
CHEN J Y, XIE F F, CUI Y Z, et al. A chromosome-scale genome sequence of pitaya (Hylocereus undatus) provides novel insights into the genome evolution and regulation of betalain biosynthesis[J]. Horticulture Research, 2021, 8: 164. doi: 10.1038/s41438-021-00612-0 |
[19] |
DUVAUD S, GABELLA C, LISACEK F, et al. Expasy, the Swiss Bioinformatics Resource Portal, as designed by its users[J]. Nucleic Acids Research, 2021, 49(W1): W216 − W227. doi: 10.1093/nar/gkab225 |
[20] |
CHOU K C, SHEN H B. Plant-mPLoc: a top-down strategy to augment the power for predicting plant protein subcellular localization[J]. PLoS One, 2010, 5(6): e11335. doi: 10.1371/journal.pone.0011335 |
[21] |
CROOKS G E, HON G, CHANDONIA J M, et al. Weblogo: a sequence logo generator[J]. Genome Research, 2004, 14(6): 1188 − 1190. doi: 10.1101/gr.849004 |
[22] |
LETUNIC I, BORK P. Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display and annotation[J]. Bioinformatics, 2007, 23(1): 127 − 128. doi: 10.1093/nar/gkab301 |
[23] |
CHEN C, CHEN H, ZHANG Y, et al. TBtools: An integrative toolkit developed for interactive analyses of big biological data[J]. Molecular Plant, 2020, 13(8): 1194 − 1202. doi: 10.1016/j.molp.2020.06.009 |
[24] |
XIONG R, LIU C, XU M, et al. Transcriptomic analysis of flower induction for long-day pitaya by supplementary lighting in short-day winter season[J]. BMC Genomics, 2020, 21(1): 329. doi: 10.1186/s12864-020-6726-6 |
[25] |
MOHAMMAD A, HASSAN J B, BEENISH F, et al. Genome-wide study of pineapple (Ananas comosus L.) bHLH transcription factors indicates that cryptochrome-interacting bHLH2 (AcCIB2) participates in flowering time regulation and abiotic stress response[J]. BMC Genomics, 2020, 21(1): 735. doi: 10.1186/s12864-020-07152-2 |
[26] |
WANG Z, JIA C, WANG J, et al. Genome-wide analysis of basic Helix-loop-Helix transcription factors to elucidate candidate genes related to fruit ripening and stress in banana (Musa acuminata L. AAA group, cv. Cavendish)[J]. Front Plant Sci, 2020, 11: 650. doi: 10.3389/fpls.2020.00650 |
[27] |
AN F, XIAO X, CHEN T, et al. Systematic analysis of bHLH transcription factors in cassava uncovers their roles in postharvest physiological deterioration and cyanogenic glycosides biosynthesis[J]. Frontiers in Plant Science, 2022, 13: 901128. doi: 10.3389/fpls.2022.901128 |
[28] |
TOLEDO-ORTIZ G, HUQ E, QUAIL P H. The Arabidopsis basic/Helix-loop-Helix transcription factor family[J]. The Plant Cell, 2003, 15(8): 1749 − 1770. doi: 10.1105/tpc.013839 |
[29] |
HAO Y, OH E, CHOI G, et al. Interactions between HLH and bHLH factors modulate light-regulated plant development[J]. Molecular Plant, 2012, 5(3): 688 − 697. doi: 10.1093/mp/sss011 |
[30] |
SHARMA N, XIN R, KIM D H, et al. NO FLOWERING IN SHORT DAY (NFL) is a bHLH transcription factor that promotes flowering specifically under short-day in Arabidopsis[J]. Development, 2016, 143(4): 682 − 690. |
[31] |
WU M, UPRETI S, YAN A, et al. SPATULA regulates floral transition and photomorphogenesis in a PHYTOCHROME B-dependent manner in Arabidopsis[J]. Biochemical and Biophysical Research Communications, 2018, 503(4): 2380 − 2385. doi: 10.1016/j.bbrc.2018.06.165 |