[1] 刘成立, 王猛, 郭攀阳, 等. 火龙果花和果实的动态发育规律研究[J]. 海南大学学报(自然科学版), 2020, 38(2): 147 − 152. doi:  10.15886/j.cnki.hdxbzkb.2020.0021
[2] HAO Y, ZONG X, REN P, et al. Basic helix-loop-helix (bHLH) transcription factors regulate a wide range of functions in Arabidopsis[J]. Int J Mol Sci, 2021, 22(13): 7152. doi:  10.3390/ijms22137152
[3] ITO S, SONG Y H, JOSEPHSON-DAY A R, et al. FLOWERING BHLH transcriptional activators control expression of the photoperiodic flowering regulator CONSTANS in Arabidopsis[J]. Proc Natl Acad Sci U S A, 2012, 109(9): 3582 − 3587. doi:  10.1073/pnas.1118876109
[4] LIU H, YU X, LI K, et al. Photoexcited CRY2 interacts with CIB1 to regulate transcription and floral initiation in Arabidopsis[J]. Science, 2008, 322(5907): 1535 − 1539. doi:  10.1126/science.1163927
[5] KUMAR S V, LUCYSHYN D, JAEGER K E, et al. Transcription factor PIF4 controls the thermosensory activation of flowering[J]. Nature, 2012, 484(7393): 242 − 245. doi:  10.1038/nature10928
[6] LI Y, WANG H, LI X, et al. Two DELLA-interacting proteins bHLH48 and bHLH60 regulate flowering under long-day conditions in Arabidopsis thaliana[J]. J Exp Bot, 2017, 68(11): 2757 − 2767. doi:  10.1093/jxb/erx143
[7] CHEN W, ZHAO L, LIU L, et al. Iron deficiency-induced transcription factors bHLH38/100/101 negatively modulate flowering time in Arabidopsis thaliana[J]. Plant Sci, 2021, 308: 110929. doi:  10.1016/j.plantsci.2021.110929
[8] WASEEM M, LI N, SU D, et al. Overexpression of a basic helix-loop-helix transcription factor gene, SlbHLH22, promotes early flowering and accelerates fruit ripening in tomato (Solanum lycopersicum L.)[J]. Planta, 2019, 250(1): 173 − 185. doi:  10.1007/s00425-019-03157-8
[9] WANG H, LI Y, PAN J, et al. The bHLH Transcription Factors MYC2, MYC3, and MYC4 are required for jasmonate-mediated inhibition of flowering in Arabidopsis[J]. Mol Plant, 2017, 10(11): 1461 − 1464. doi:  10.1016/j.molp.2017.08.007
[10] WANG F, GAO Y, LIU Y, et al. BES1-regulated BEE1 controls photoperiodic flowering downstream of blue light signaling pathway in Arabidopsis[J]. New Phytol, 2019, 223(3): 1407 − 1419. doi:  10.1111/nph.15866
[11] LIU Y, LI X, MA D, et al. CIB1 and CO interact to mediate CRY2-dependent regulation of flowering[J]. EMBO Rep, 2018, 19(10): e45762. doi:  10.15252/embr.201845762
[12] REYMOND M C, BRUNOUD G, CHAUVET A, et al. A light-regulated genetic module was recruited to carpel development in Arabidopsis following a structural change to SPATULA[J]. Plant Cell, 2012, 24(7): 2812 − 2825. doi:  10.1105/tpc.112.097915
[13] HEIM M A, JAKOBY M, WERBER M, et al. The basic helix-loop-helix transcription factor family in plants: a genome-wide study of protein structure and functional diversity[J]. Mol Biol Evol, 2003, 20(5): 735 − 747. doi:  10.1093/molbev/msg088
[14] GUO X J, WANG J R. Global identification, structural analysis and expression characterization of bHLH transcription factors in wheat[J]. BMC Plant Biol, 2017, 17(1): 90. doi:  10.1186/s12870-017-1038-y
[15] FAN Y, LAI D, YANG H, et al. Genome-wide identification and expression analysis of the bHLH transcription factor family and its response to abiotic stress in foxtail millet (Setaria italica L.)[J]. BMC Genomics, 2021, 22(1): 778. doi:  10.1186/s12864-021-08095-y
[16] BANO N, PATEL P, CHAKRABARTY D, et al. Genome-wide identification, phylogeny, and expression analysis of the bHLH gene family in tobacco (Nicotiana tabacum)[J]. Physiol Mol Biol Plants, 2021, 27(8): 1747 − 1764. doi:  10.1007/s12298-021-01042-x
[17] ZHANG X Y, QIU J Y, HUI Q L, et al. Systematic analysis of the basic/helix-loop-helix (bHLH) transcription factor family in pummelo (Citrus grandis) and identification of the key members involved in the response to iron deficiency[J]. BMC Genomics, 2020, 21(1): 233. doi:  10.1186/s12864-020-6644-7
[18] CHEN J Y, XIE F F, CUI Y Z, et al. A chromosome-scale genome sequence of pitaya (Hylocereus undatus) provides novel insights into the genome evolution and regulation of betalain biosynthesis[J]. Horticulture Research, 2021, 8: 164. doi:  10.1038/s41438-021-00612-0
[19] DUVAUD S, GABELLA C, LISACEK F, et al. Expasy, the Swiss Bioinformatics Resource Portal, as designed by its users[J]. Nucleic Acids Research, 2021, 49(W1): W216 − W227. doi:  10.1093/nar/gkab225
[20] CHOU K C, SHEN H B. Plant-mPLoc: a top-down strategy to augment the power for predicting plant protein subcellular localization[J]. PLoS One, 2010, 5(6): e11335. doi:  10.1371/journal.pone.0011335
[21] CROOKS G E, HON G, CHANDONIA J M, et al. Weblogo: a sequence logo generator[J]. Genome Research, 2004, 14(6): 1188 − 1190. doi:  10.1101/gr.849004
[22] LETUNIC I, BORK P. Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display and annotation[J]. Bioinformatics, 2007, 23(1): 127 − 128. doi:  10.1093/nar/gkab301
[23] CHEN C, CHEN H, ZHANG Y, et al. TBtools: An integrative toolkit developed for interactive analyses of big biological data[J]. Molecular Plant, 2020, 13(8): 1194 − 1202. doi:  10.1016/j.molp.2020.06.009
[24] XIONG R, LIU C, XU M, et al. Transcriptomic analysis of flower induction for long-day pitaya by supplementary lighting in short-day winter season[J]. BMC Genomics, 2020, 21(1): 329. doi:  10.1186/s12864-020-6726-6
[25] MOHAMMAD A, HASSAN J B, BEENISH F, et al. Genome-wide study of pineapple (Ananas comosus L.) bHLH transcription factors indicates that cryptochrome-interacting bHLH2 (AcCIB2) participates in flowering time regulation and abiotic stress response[J]. BMC Genomics, 2020, 21(1): 735. doi:  10.1186/s12864-020-07152-2
[26] WANG Z, JIA C, WANG J, et al. Genome-wide analysis of basic Helix-loop-Helix transcription factors to elucidate candidate genes related to fruit ripening and stress in banana (Musa acuminata L. AAA group, cv. Cavendish)[J]. Front Plant Sci, 2020, 11: 650. doi:  10.3389/fpls.2020.00650
[27] AN F, XIAO X, CHEN T, et al. Systematic analysis of bHLH transcription factors in cassava uncovers their roles in postharvest physiological deterioration and cyanogenic glycosides biosynthesis[J]. Frontiers in Plant Science, 2022, 13: 901128. doi:  10.3389/fpls.2022.901128
[28] TOLEDO-ORTIZ G, HUQ E, QUAIL P H. The Arabidopsis basic/Helix-loop-Helix transcription factor family[J]. The Plant Cell, 2003, 15(8): 1749 − 1770. doi:  10.1105/tpc.013839
[29] HAO Y, OH E, CHOI G, et al. Interactions between HLH and bHLH factors modulate light-regulated plant development[J]. Molecular Plant, 2012, 5(3): 688 − 697. doi:  10.1093/mp/sss011
[30] SHARMA N, XIN R, KIM D H, et al. NO FLOWERING IN SHORT DAY (NFL) is a bHLH transcription factor that promotes flowering specifically under short-day in Arabidopsis[J]. Development, 2016, 143(4): 682 − 690.
[31] WU M, UPRETI S, YAN A, et al. SPATULA regulates floral transition and photomorphogenesis in a PHYTOCHROME B-dependent manner in Arabidopsis[J]. Biochemical and Biophysical Research Communications, 2018, 503(4): 2380 − 2385. doi:  10.1016/j.bbrc.2018.06.165