-
葡萄(grape )是葡萄科葡萄属的藤本类植物,不仅具有悠久的种植历史,也是目前全球种植面积最大以及产量最高的经济水果之一[1]。葡萄属可分为真葡萄和麝香葡萄两个亚属共计70多个种,但具有经济价值的驯化栽培种仅有20多个种且均属于真葡萄属,主要包括4大种群:欧亚种、美洲种、东亚种以及三大种群杂交选育出来的杂交种(以下简称种间杂交种)[2]。目前中国主要种植的类型为欧亚种与杂交种,其中杂交种的抗病性与环境适应性强于欧亚品种[3]。葡萄作为人们喜爱的水果之一,除了果肉的鲜美以外,以葡萄为原料的副产品如葡萄酒、葡萄汁和葡萄干等也受人们的欢迎[4-5]。在当今社会,消费者对食物的追求除最基本的口感外,对食物中的营养成分及含量水平也提出了更多的要求,因此探究葡萄中所含的营养物质的分布与含量成为研究热点[6-7]。
氨基酸、维生素、脂质以及类黄酮等物质作为四类常见营养元素,已有研究人员对其在葡萄中的分布情况开展研究。徐雯等[8]对中国河北省内主要种植的6个葡萄品种进行氨基酸的检测,发现葡萄中主要的氨基酸为谷氨酸、精氨酸、脯氨酸和天冬氨酸等。此外,Tassoni A等[9]通过研究抗病型和感病型葡萄品种的氨基酸水平差异,发现在抗病性强的葡萄品种中,谷氨酰胺、精氨酸、脯氨酸和苏氨酸等氨基酸的含量均高于感病型的葡萄品种。维生素是生物体维持正常生命活动所必需的营养物质,在生物体的生长发育等代谢过程中发挥重要作用。金洪艳等[10]对葡萄中所含的维生素进行检测,发现在葡萄中的维生素主要包括维生素B族和C族。脂质主要在葡萄籽中积累,Pérez-Navarro J等[11]对葡萄中所含的脂质进行检测,发现在果肉中广泛存在棕榈酸、硬脂酸、亚油酸和甘油磷脂等脂质,还发现在葡萄籽中不饱和脂肪酸的比例相对较高。类黄酮是葡萄中种类最多且含量最高的营养代谢物,其在葡萄中的分布与含量受到研究人员的广泛关注,葡萄中主要的类黄酮化合物包括花青素、黄酮醇和黄烷醇等[12]。研究人员还发现类黄酮在葡萄品种间存在很大的积累差异[13],例如,在大多数红葡萄品种中,黄烷醇和花青素是类黄酮化合物的主要组成成分,而在白葡萄品种中,酚类物质的含量相对较低,其中黄酮醇和黄烷醇占主导地位[14]。
代谢组学(metabonomics)是通过组群指标分析,进行高通量检测和数据处理,研究生物体整体或组织细胞系统的动态代谢变化,特别是对内源代谢、遗传变异、环境变化乃至各种物质进入代谢系统的特征和影响的学科。代谢组与基因组、转录组和蛋白组一起构成了系统生物学,代谢物是基因转录与蛋白表达的终端产物,承载着生物体众多的生命活动并体现生物的生命状态[15]。目前代谢领域常用的研究分析平台分别是液相色谱质谱联用系统(LC-MS)、气相色谱质谱联用系统(GC-MS)以及核磁共振(NMR)等。因LC-MS具有高灵敏和高重现性的双重优势,LC-MS是目前代谢组学研究中应用最广泛的检测手段。随着科学技术的不断进步与发展,液相色谱体系也从高效液相色谱体系(HPLC)发展到分离比更高的超高效液相色谱体系(UPLC),体系的升级使得物质分离效果和检测效率得到了大幅度的提升[16]。代谢组学常用物质检测方法有非靶向代谢检测[17]、靶向代谢检测[18]以及广泛靶向代谢检测方法[19],非靶向代谢检测和靶向代谢检测的检测方法各有优劣,而广泛靶向检测方法综合两者优势在代谢领域得到了广泛应用。代谢组学在植物相关研究中至关重要[20],在植物的品种鉴定、中医药学以及园艺作物的品质研究等领域均有广泛应用 [21-23]。
葡萄作为高经济价值的水果之一,培育味道鲜美和营养价值高且具有广泛环境适应能力的葡萄品种是研究人员不断努力的方向。本研究收集了起源于欧亚种群(V.vinifera)或种间杂交种群两大种群共20份葡萄栽培品种,利用广泛靶向代谢检测方法对葡萄群体进行高通量代谢检测分析,建立了涵盖多类代谢物质葡萄代谢数据库,比较了几类营养代谢物在葡萄欧亚种和种间杂交种之间的分布情况,意为葡萄高营养品种的培育提供新的思路以及理论基础。
Analysis of difference in nutritional quality between grapes of the Eurasian group and hybrids
-
摘要: 葡萄(grape)是葡萄科葡萄属的藤本类植物,主要包括四大种群:欧亚种、美洲种、东亚种以及三大种群杂交选育出来的杂交种。目前国内主要种植的葡萄类型为欧亚种和杂交种。葡萄因其果肉的鲜美受到消费者的喜爱。为研究葡萄中的营养物质的分布与积累,本研究收集了来自葡萄欧亚种群(V.vinifera)和杂交种群的20份葡萄品种,运用代谢组检测方法进行研究,结合多类物质注释方式,建立了1个包含768个已知代谢物的葡萄代谢数据库,涵盖了类黄酮、脂质、氨基酸、维生素、有机酸、萜类、多酚、酚胺以及其他共9类代谢物大类。通过代谢分析手段,发现葡萄代谢物在欧亚种和杂交种之间的积累差异,葡萄杂交种中总氨基酸、维生素B3、总脂肪酸以及4种花青素的含量高于葡萄欧亚种,而维生素B6和黄烷醇等代谢物的含量在葡萄欧亚种中相对更高。Abstract: Grapes are vining plants of the genus Vitis, consisting of four major groups of Vitis species: Eurasian, American, East Asian, and hybrids selected from crosses of the three major groups. Twenty grape varieties from the Eurasian group (V. vinifera) and their hybrid populations were collected and analyzed by using a wide range of targeted metabolic assays, combined with multiple substance annotation methods to analyze the distribution and accumulation of nutrients in the grapes. A grape metabolic database was established containing 768 known metabolites, covering flavonoids, lipids, amino acids, vitamins, organic acids, terpenoids, polyphenols, phenolamines, and others. Metabolic analysis showed that there were differences in the accumulation of metabolites between the Eurasian group and the hybrids. The relative contents of total amino acids, vitamin B3 group, total fatty acids and four anthocyanins were higher in the hybrids than in the Eurasian group, while the relative contents of metabolites such as vitamin B6 and flavanols were higher in the Eurasian group.
-
Key words:
- Vitis vinifera /
- metabolomics /
- database
-
-
[1] 金良, 陈尚武, 马会勤. 葡萄蛋白质组学研究进展[J]. 中国生物工程杂志, 2010, 30(10): 100 − 107. doi: 10.13523/j.cb.20101017 [2] 李顺雨, 潘学军, 张文娥, 等. 葡萄属种质资源多样性及利用[J]. 种子, 2010, 29(1): 61 − 64. doi: 10.3969/j.issn.1001-4705.2010.01.017 [3] 蔡之博, 李军, 王鑫, 等. 如何选择葡萄品种[J]. 北方果树, 2017, 198(2): 26 − 28. doi: 10.16376/j.cnki.bfgs.2017.02.009 [4] 黄丽萍, 马小河, 王敏, 等. 鲜食葡萄种质酸甜风味指标评价与分析[J]. 中外葡萄与葡萄酒, 2022, 243(3): 55 − 58. [5] 刘春艳, 张静, 李栋梅, 等. 葡萄酒风味物质研究进展[J]. 食品工业科技, 2017, 38(14): 310 − 313. doi: 10.13386/j.issn1002-0306.2017.14.061 [6] HAVLIN J L, AUSTIN R, HARDY D, et al. Nutrient management effects on wine grape tissue nutrient content [J]. Plants (Basel), 2022, 11(2): 158. [7] SANTA K. Grape phytochemicals and vitamin D in the alleviation of lung disorders [J]. Endocr Metab Immune, 2022, 22(13): 1276 − 1292. [8] 徐雯, 苏雅, 陈秋生, 等. 不同葡萄品种果实中氨基酸含量分析[J]. 天津农学院学报, 2020, 27(3): 30 − 34. doi: 10.19640/j.cnki.jtau.2020.03.007 [9] TASSONI A, ZAPPI A, MELUCCI D, et al. Seasonal changes in amino acids and phenolic compounds in fruits from hybrid cross populations of American grapes differing in disease resistance [J]. Plant Physiology and Biochemistry, 2019, 135: 182 − 193. doi: 10.1016/j.plaphy.2018.11.034 [10] 金洪艳, 裴立楠. 葡萄酒中的营养物质分析[J]. 食品安全导刊, 2020, 280(21): 43. doi: 10.16043/j.cnki.cfs.2020.21.034 [11] PÉREZ-NAVARRO J, DA ROS A, MASUERO D, et al. LC-MS/MS analysis of free fatty acid composition and other lipids in skins and seeds of Vitis vinifera grape cultivars [J]. Food Research International, 2019, 125: 108556. [12] FLAMINI R, MATTIVI F, DE ROSSO M, et al. Advanced knowledge of three important classes of grape phenolics: anthocyanins, stilbenes and flavonols [J]. International Journal of Molecular Sciences, 2013, 14(10): 19651 − 19669. doi: 10.3390/ijms141019651 [13] ZHU L, LI X, HU X, et al. Quality characteristics and anthocyanin profiles of different Vitis amurensis grape cultivars and hybrids from Chinese germplasm [J]. Molecules, 2021, 26(21): 6696. doi: 10.3390/molecules26216696 [14] LINGUA M S, FABANI M P, WUNDERLIN D A, et al. From grape to wine: changes in phenolic composition and its influence on antioxidant activity [J]. Food Chemistry, 2016, 208: 228 − 238. doi: 10.1016/j.foodchem.2016.04.009 [15] KATAM R, LIN C, GRANT K, et al. Advances in plant metabolomics and its applications in stress and single-cell biology [J]. International Journal of Molecular Sciences, 2022, 23(13): 6985. doi: 10.3390/ijms23136985 [16] EVANS A M, DEHAVEN C D, BARRETT T, et al. Integrated, nontargeted ultrahigh performance liquid chromatography/electrospray ionization tandem mass spectrometry platform for the identification and relative quantification of the small-molecule complement of biological systems [J]. Analytical Chemistry, 2009, 81(16): 6656 − 6667. doi: 10.1021/ac901536h [17] FIEHN O. Metabolomics-the link between genotypes and phenotypes [J]. Plant Mol Biol, 2002, 48(1/2): 155 − 171. doi: 10.1023/A:1013713905833 [18] WILSON I D. High-performance liquid chromatography-mass spectrometry (HPLC-MS)-based drug metabolite profiling [J]. Metabolic Profiling, 2011, 708: 173 − 190. [19] CHEN W, GONG L, GUO Z, et al. A novel integrated method for large-scale detection, identification, and quantification of widely targeted metabolites: application in the study of rice metabolomics [J]. Molecular Plant, 2013, 6(6): 1769 − 1780. doi: 10.1093/mp/sst080 [20] SAITO K, MATSUDA F. Metabolomics for functional genomics, systems biology, and biotechnology [J]. Annual Review of Plant Biology, 2010, 61: 463 − 489. doi: 10.1146/annurev.arplant.043008.092035 [21] ZOU Q, GUO Q, WANG T, et al. Comparison of metabolome characteristics and screening of chemical markers in Chrysanthemum indicum from different habitats [J]. Physiology and Molecular Biology of Plants , 2022, 28(1): 65 − 76. doi: 10.1007/s12298-022-01137-z [22] WEI G, TIAN P, ZHANG F, et al. Integrative analyses of nontargeted volatile profiling and transcriptome data provide molecular insight into VOC diversity in cucumber plants (Cucumis sativus) [J]. Plant Physiology, 2016, 172(1): 603 − 618. doi: 10.1104/pp.16.01051 [23] ROTHENBERG D O, YANG H, CHEN M, et al. Metabolome and transcriptome sequencing analysis reveals anthocyanin metabolism in pink flowers of anthocyanin-rich tea (Camellia sinensis) [J]. Molecules, 2019, 24(6): 1064. doi: 10.3390/molecules24061064 [24] LUDWIG M, FLEISCHAUER M, DÜHRKOP K, et al. De novo molecular formula annotation and structure elucidation using SIRIUS 4 [J]. Methods Mol Biol, 2020, 2104: 185 − 207. [25] REN R, SUN X E, HU L. A new method for hosting and sharing MATLAB Web App [J]. Scientific Reports, 2022, 12(1): 21645. doi: 10.1038/s41598-022-26165-3 [26] ZHONG H, LIU Z, ZHANG F, et al. Metabolomic and transcriptomic analyses reveal the effects of self- and hetero-grafting on anthocyanin biosynthesis in grapevine [J]. Horticulture Research, 2022, 9: uhac103 − 103. [27] FERRãO L F V, AMADEU R R, BENEVENUTO J, et al. Genomic selection in an outcrossing autotetraploid fruit crop: lessons from blueberry breeding [J]. Frontiers in Plant Science, 2021, 12: 676326. [28] GAMBOA-BECERRA R, HERNÁNDEZ-HERNÁNDEZ M C, GONZÁLEZ-RÍOS ó, et al. Metabolomic markers for the early selection of Coffea canephora plants with desirable cup quality traits [J]. Metabolites, 2019, 9(10): 214. doi: 10.3390/metabo9100214 [29] SONG X, NIE F, CHEN W, et al. Coriander genomics database: A genomic, transcriptomic, and metabolic database for coriander [J]. Horticulture Research, 2020, 7: 55. doi: 10.1038/s41438-020-0261-0