Preparation and Comparative Analysis of β-glucosidase Antibodies
-
摘要: β-葡萄糖苷酶是一种广泛存在于自然界的水解酶,其含量高低直接关系到水解产物的量。木薯含有大量的生氰糖苷,是β-葡萄糖苷酶的底物之一,被水解后将产生有毒的氰化物,给食品安全带来隐患。为保障食品安全,给木薯及其制品的氰化物含量提供快速检测技术。本研究以A,B,C 3种来源的β-葡萄糖苷酶为抗原免疫Balb/C小鼠,并制备单克隆抗体和做出初步评价。结果表明,A抗原免疫的小鼠融合后获得5株杂交瘤细胞株,效价均达到105以上,抗体亚型均为IgG1型,但单克隆抗体与B抗原、C抗原、KLH、BSA均无交叉反应。说明不同来源的β-葡萄糖苷酶免疫小鼠得到的抗体均为特异性抗体。Abstract: β-glucosidase is a hydrolase which exists widely in nature, and its content is directly related to the amount of hydrolysate. Cassava contains a large number of cyanogenic glycosides which are one of the substrates of β-glucosidase and will produce a poisonous substance, cyanide after hydrolyzed by β-glucosidase, bringing hidden dangers to the food safety. For food safety, an attempt was made to provide a rapid detection technique for cyanide content of cassava and its products. The Balb/C mice were immunized with β-glucosidase from A, B and C sources as antigens, and their monoclonal antibodies were prepared and evaluated. The results showed that the antibodies obtained from the mice immunized with the three sources(A, B and C) of β-glucosidase did not cross-react with each other. Five hybridoma cell lines were obtained from the spleen of the mice immunized with Antigen A, and the titer of antibodies was above 105. All the subtypes were IgG1, but all the monoclonal antibodies had no cross-reaction with the Antigens B and C, KLH and BSA. It was concluded that the antibodies obtained from the mice immunized with different sources of β-glucosidase were specific.
-
Key words:
- β-glucosidase /
- antibody /
- antibody preparation
-
[1] 王昊宇.β-葡萄糖苷酶的研究及应用[J].中国高新区, 2018 (14):215. [2] 潘利华, 罗建平.β-葡萄糖苷酶的研究及应用进展[J].食品科学, 2006 (12):803-807. [3] [4] 曹慧方, 李新新, 张玥琦, 等.来源于脂环酸芽孢杆菌的GH1家族β-葡萄糖苷酶的葡萄糖耐受性分子改造[J].中国农业科技导报, 2018, 20 (5):26-33. [5] ERWIN STRAHSBURGER, ANA MARIA LOPEZ DE LACEY, LLARIA MAROTTI, et al.In vivo assay to identify bacteria with β-glucosidase activity[J].Electronic Journal of Biotechnology, 2017, 30:83-87. [6] 连彦军, 陈道达, 郑勇斌, 等.抗CEA单抗-β-葡萄糖苷酶偶联物的制备及体外激活苦杏仁甙靶向杀伤LoVo细胞的实验研究[J].中国肿瘤生物治疗杂志, 2004 (4):239-243. [7] 周俊, 夏秀东, 李亚辉, 等.产β-D-葡萄糖苷酶乳酸菌的筛选、鉴定及系统发育分析[J].食品工业科技, 2018, 39 (12):119-123 , 131. [8] 李华, 高丽.β-葡萄糖苷酶活性测定方法的研究进展[J].食品与生物技术学报, 2007 (2):107-114. [9] 韦策.β-葡萄糖苷酶的固定化及应用研究[D].南京:南京林业大学, 2012. [10] 梁华正, 刘富梁, 彭玲西, 等.京尼平苷为底物测定β-葡萄糖苷酶活力的方法[J].食品科学, 2006 (4):182-185. [11] 陈守文, 陈九武, 赵山.利用黑曲霉β-葡萄糖苷酶改善葡萄酒的风味[J].中国酿造, 1999 (3):17-19. [12] 李晓婷, 王纪华, 朱大洲, 等.果蔬农药残留快速检测方法研究进展[J].农业工程学报, 2011, 27 (S2):363-370. [13] 余厚美.饲料中硝基呋喃类药物检测的胶体金试纸条研制[D].北京:北京农学院, 2015. [14] 杨利国, 胡少昶, 魏平华, 等.酶免疫测定技术[M].南京:南京大学出版社, 1998:1, 32, 143-157 [15] 欧文军, 余厚美, 安飞飞, 等.木薯钙调蛋白的原核表达及其单克隆抗体的制备[J].西北农业学报, 2017, 26 (9):1317-1323. [16] 宋世军, 张旋.小分子抗原免疫途径和结合数量对抗体效价的影响[J].国际检验医学杂志, 2011, 32 (10):1069-1070 +1072. [17] 张奇.倍硫磷和速灭威半抗原分子设计及其免疫效果研究[D].南京:南京农业大学, 2007. [18] 田浩泉.更換抗原注射途徑对抗体产生的影响[J].青岛医学院学报, 1959 (1):3-6. [19] 袁晓华.β-葡萄糖苷酶产生菌的筛选、培养条件优化及β-葡萄糖苷酶应用研究[D].济南:山东大学, 2009. [20] 李时君, 张春燕, 李佩珊, 等.G145R rHBsAg抗原衰减对抗体亲和层析的影响[J].生物技术, 2008 (5):51-54. [21] 朱云娟.缺乏12氨基酸重复序列的恶性疟原虫裂殖子表面蛋白MSP2 FC27型抗原对抗体识别的差异[J].国外医学 (寄生虫病分册), 1997 (3):122-123. -

计量
- 文章访问数: 1
- HTML全文浏览量: 0
- PDF下载量: 0
- 被引次数: 0