[1] 金良, 陈尚武, 马会勤. 葡萄蛋白质组学研究进展[J]. 中国生物工程杂志, 2010, 30(10): 100 − 107. doi:  10.13523/j.cb.20101017
[2] 李顺雨, 潘学军, 张文娥, 等. 葡萄属种质资源多样性及利用[J]. 种子, 2010, 29(1): 61 − 64. doi:  10.3969/j.issn.1001-4705.2010.01.017
[3] 蔡之博, 李军, 王鑫, 等. 如何选择葡萄品种[J]. 北方果树, 2017, 198(2): 26 − 28. doi:  10.16376/j.cnki.bfgs.2017.02.009
[4] 黄丽萍, 马小河, 王敏, 等. 鲜食葡萄种质酸甜风味指标评价与分析[J]. 中外葡萄与葡萄酒, 2022, 243(3): 55 − 58.
[5] 刘春艳, 张静, 李栋梅, 等. 葡萄酒风味物质研究进展[J]. 食品工业科技, 2017, 38(14): 310 − 313. doi:  10.13386/j.issn1002-0306.2017.14.061
[6] HAVLIN J L, AUSTIN R, HARDY D, et al. Nutrient management effects on wine grape tissue nutrient content [J]. Plants (Basel), 2022, 11(2): 158.
[7] SANTA K. Grape phytochemicals and vitamin D in the alleviation of lung disorders [J]. Endocr Metab Immune, 2022, 22(13): 1276 − 1292.
[8] 徐雯, 苏雅, 陈秋生, 等. 不同葡萄品种果实中氨基酸含量分析[J]. 天津农学院学报, 2020, 27(3): 30 − 34. doi:  10.19640/j.cnki.jtau.2020.03.007
[9] TASSONI A, ZAPPI A, MELUCCI D, et al. Seasonal changes in amino acids and phenolic compounds in fruits from hybrid cross populations of American grapes differing in disease resistance [J]. Plant Physiology and Biochemistry, 2019, 135: 182 − 193. doi:  10.1016/j.plaphy.2018.11.034
[10] 金洪艳, 裴立楠. 葡萄酒中的营养物质分析[J]. 食品安全导刊, 2020, 280(21): 43. doi:  10.16043/j.cnki.cfs.2020.21.034
[11] PÉREZ-NAVARRO J, DA ROS A, MASUERO D, et al. LC-MS/MS analysis of free fatty acid composition and other lipids in skins and seeds of Vitis vinifera grape cultivars [J]. Food Research International, 2019, 125: 108556.
[12] FLAMINI R, MATTIVI F, DE ROSSO M, et al. Advanced knowledge of three important classes of grape phenolics: anthocyanins, stilbenes and flavonols [J]. International Journal of Molecular Sciences, 2013, 14(10): 19651 − 19669. doi:  10.3390/ijms141019651
[13] ZHU L, LI X, HU X, et al. Quality characteristics and anthocyanin profiles of different Vitis amurensis grape cultivars and hybrids from Chinese germplasm [J]. Molecules, 2021, 26(21): 6696. doi:  10.3390/molecules26216696
[14] LINGUA M S, FABANI M P, WUNDERLIN D A, et al. From grape to wine: changes in phenolic composition and its influence on antioxidant activity [J]. Food Chemistry, 2016, 208: 228 − 238. doi:  10.1016/j.foodchem.2016.04.009
[15] KATAM R, LIN C, GRANT K, et al. Advances in plant metabolomics and its applications in stress and single-cell biology [J]. International Journal of Molecular Sciences, 2022, 23(13): 6985. doi:  10.3390/ijms23136985
[16] EVANS A M, DEHAVEN C D, BARRETT T, et al. Integrated, nontargeted ultrahigh performance liquid chromatography/electrospray ionization tandem mass spectrometry platform for the identification and relative quantification of the small-molecule complement of biological systems [J]. Analytical Chemistry, 2009, 81(16): 6656 − 6667. doi:  10.1021/ac901536h
[17] FIEHN O. Metabolomics-the link between genotypes and phenotypes [J]. Plant Mol Biol, 2002, 48(1/2): 155 − 171. doi:  10.1023/A:1013713905833
[18] WILSON I D. High-performance liquid chromatography-mass spectrometry (HPLC-MS)-based drug metabolite profiling [J]. Metabolic Profiling, 2011, 708: 173 − 190.
[19] CHEN W, GONG L, GUO Z, et al. A novel integrated method for large-scale detection, identification, and quantification of widely targeted metabolites: application in the study of rice metabolomics [J]. Molecular Plant, 2013, 6(6): 1769 − 1780. doi:  10.1093/mp/sst080
[20] SAITO K, MATSUDA F. Metabolomics for functional genomics, systems biology, and biotechnology [J]. Annual Review of Plant Biology, 2010, 61: 463 − 489. doi:  10.1146/annurev.arplant.043008.092035
[21] ZOU Q, GUO Q, WANG T, et al. Comparison of metabolome characteristics and screening of chemical markers in Chrysanthemum indicum from different habitats [J]. Physiology and Molecular Biology of Plants , 2022, 28(1): 65 − 76. doi:  10.1007/s12298-022-01137-z
[22] WEI G, TIAN P, ZHANG F, et al. Integrative analyses of nontargeted volatile profiling and transcriptome data provide molecular insight into VOC diversity in cucumber plants (Cucumis sativus) [J]. Plant Physiology, 2016, 172(1): 603 − 618. doi:  10.1104/pp.16.01051
[23] ROTHENBERG D O, YANG H, CHEN M, et al. Metabolome and transcriptome sequencing analysis reveals anthocyanin metabolism in pink flowers of anthocyanin-rich tea (Camellia sinensis) [J]. Molecules, 2019, 24(6): 1064. doi:  10.3390/molecules24061064
[24] LUDWIG M, FLEISCHAUER M, DÜHRKOP K, et al. De novo molecular formula annotation and structure elucidation using SIRIUS 4 [J]. Methods Mol Biol, 2020, 2104: 185 − 207.
[25] REN R, SUN X E, HU L. A new method for hosting and sharing MATLAB Web App [J]. Scientific Reports, 2022, 12(1): 21645. doi:  10.1038/s41598-022-26165-3
[26] ZHONG H, LIU Z, ZHANG F, et al. Metabolomic and transcriptomic analyses reveal the effects of self- and hetero-grafting on anthocyanin biosynthesis in grapevine [J]. Horticulture Research, 2022, 9: uhac103 − 103.
[27] FERRãO L F V, AMADEU R R, BENEVENUTO J, et al. Genomic selection in an outcrossing autotetraploid fruit crop: lessons from blueberry breeding [J]. Frontiers in Plant Science, 2021, 12: 676326.
[28] GAMBOA-BECERRA R, HERNÁNDEZ-HERNÁNDEZ M C, GONZÁLEZ-RÍOS ó, et al. Metabolomic markers for the early selection of Coffea canephora plants with desirable cup quality traits [J]. Metabolites, 2019, 9(10): 214. doi:  10.3390/metabo9100214
[29] SONG X, NIE F, CHEN W, et al. Coriander genomics database: A genomic, transcriptomic, and metabolic database for coriander [J]. Horticulture Research, 2020, 7: 55. doi:  10.1038/s41438-020-0261-0