-
冰菜(Mesembryanthemum crystallinum)又名冰叶日中花、冰草、冰柱子,属于番杏科、日中花属的一年生草本植物,冰菜富含氨基酸、抗酸化物质等物质,并且富含钠、钾、胡萝卜素等矿物质,具有较高的高营养价值[1]。由于其具有强大的环境适应能力,现已被作为盐生植物模型,用于研究植物应对盐分和水分胁迫响应的基本生理、生化和分子机制[2-4]。成年冰菜具有一系列应对环境压力的调节机制,辐射、干旱、高温以及盐胁迫会刺激冰菜的光合作用类型从C3循环转化为景天酸循环[3],从而在夜间吸收CO2抑制蒸腾作用进而减少水分流失,显著提高水分利用效率[5]。冰菜的另一个显著环境适应性特征是其植株的地上部分存在表皮泡状细胞,也被称为盐囊泡,这些囊泡整齐地排列在冰菜的叶、茎以及花器官表面,在未受到环境胁迫时,这些泡状细胞紧贴表皮表面,当遭遇胁迫时,植株会迅速做出反应,表皮泡状细胞内部积累Na+进而膨胀至总体积的25% [6],完全膨大的表皮泡状细胞内部积累的Na+浓度高达1 mol·L−1[3],此外,囊泡内容物还包括一些醇类物质[7-8], 冰菜盐囊泡的存在是其耐盐的重要因素。扩大的盐囊泡内部积累的类黄酮和花青素可以在其紫外线防护中发挥作用,并可以反射部分辐射保护叶肉细胞免受热损伤[9]。不仅如此,膨大的盐囊泡还可以在阻止昆虫和食草动物食用、吸引传粉媒介以及帮助种子传播中发挥重要作用,还可以隔离并储存重金属和盐等不需要的外来物质[10]。在植物特化细胞的研究中,尤其是分离过程相对简单的细胞,例如花粉、根毛以及保卫细胞等,表皮囊泡细胞相对于其他细胞类型而言更能深入阐明冰菜响应盐胁迫的机理。蛋白组学和转录组学的研究表明,冰菜盐囊泡中醛缩酶和烯醇化酶的活性受到盐处理的诱导而变化,这表明冰菜的表皮囊泡细胞具有代谢活性[11]盐胁迫下冰菜的离子转运、渗透物质积累以及压力信号传导等过程存在着显著变化[12],然而到目前为止,还未见关于盐胁迫下冰菜囊泡比较代谢组学的报道,因此,本研究拟对盐处理前后冰菜盐囊泡提取物进行非靶向代谢组学分析,探索盐处理前后冰菜囊泡代谢物的差异,旨在为冰菜耐盐机理的阐释及生产实践提供一定的理论参考。
-
对冰菜盐囊泡代谢物的2组处理数据进行偏最小二乘投影判别分析(PLS-DA),图1是PLS-DA 得分图。从图1可知,2种处理各重复样本彼此之间可以明显分开,PC1根据不同处理对样本进行分离,数据中的最大方差为28.06%,PC2根据样本重复对数据进行分离,数据中的最大方差为12.4%。说明经盐胁迫处理后的冰菜盐囊泡代谢成分存在显著差异。
-
将LC-MS/MS采集的原始数据导入Compound Discoverer 3.1进行数据分析,使用华大自建标准品库对代谢物进行鉴定。结果表明,样品中共检测到了356种已知代谢物,其中,包括正离子模式代谢物290种,负离子模式代谢物179种。为了进一步了解不同代谢物的分类情况和功能特性,对鉴定得到的代谢物进行了分类注释和功能注释。鉴定出的代谢物中有137个被映射到不同代谢通路(图2)。映射到氨基酸代谢(amino acid metabolism)最多,有29种,其次是脂类代谢(lipid metabolism)的12种,此外,还有部分代谢物被映射到其他通路。总体而言,鉴定出的代谢物大部分参与新陈代谢过程,只有9种代谢物参与膜运输和信号传导等环境信息处理过程,4种代谢物参与遗传信息处理过程。
-
根据设定的筛选条件(VIP≥1,Fold-Change≥1.2或者 ≤0.83,P<0.05),结果表明(表1):在盐处理组中共筛选到37种核心差异代谢物,其中,盐处理后20种代谢物在盐囊泡中的含量显著下调,17种代谢物含量显著上调,上调幅度最大的代谢物是乙酰胆碱,其含量在盐处理后较对照相比上调了超过14倍,下调幅度较大的有亚麻酸(13(s)-hotre)、茉莉酸、甲基双酮以及α-雌二醇等代谢物,这几种代谢物在盐处理后的含量均下调至对照水平的20%左右(图3)。聚类分析表明,这些差异代谢物包含1种苯环型化合物、1种脂肪酰类化合物、3种脂质和类脂分子、1种有机氮化合物、1种有机杂环化合物、2种苯丙烷类和聚酮类化合物、1种类固醇化合物和2种萜类化合物。
表 1 盐处理及对照条件下冰菜盐囊泡核心差异代谢分析
代谢物名称 变化倍数 P值 13(s)-hotre 0.15570994 0.030264727 茉莉酸 Jasmonic acid 0.218569326 0.022545339 甲基双酮 19-norandrostenedione 0.229452659 0.008855389 α-雌二醇 Α-estradiol 0.248734898 0.009438115 Methyl 2-{[2-o-(6-deoxy-α-l-mannopyranosyl)-β-d-glucopyranosyl]oxy}benzoate 0.349857598 0.016001883 N4-(2-methoxyphenyl)-7-nitro-2,1,3-benzoxadiazol-4-amine 0.417636789 0.001939085 11β-羟基雄甾酮 11β-hydroxyandrosterone 0.426117111 0.003515696 Methyl 2-{[2-o-(6-deoxy-α-l-mannopyranosyl)-β-d-glucopyranosyl]oxy}benzoate 0.430390925 0.033490336 (tert-butyl)-2,3,5,6,8,9,11,12-octahydro-1,4,7,10,13- benzopentaoxacyclopentadecine 0.450408981 0.030006846 十六碳烷二酸 Hexadecanedioic acid 0.461182594 0.031592167 反式对香豆酰基酪胺 (2e)-3-(4-hydroxyphenyl)-n-[2-(4-hydroxyphenyl)ethyl]acrylamide 0.469959388 0.032433379 [(3r,4s)-3-({5-[(phenylsulfanyl)methyl]-1,2-oxazol-3-yl}methyl)-4-piperidinyl] -n-(1,3-thiazol-2-yl)acetamide 0.533747968 0.006560631 N-苄基甲酰胺 N-benzylformamide 0.546190634 0.013117271 大麦芽碱 Hordenine 0.556389125 0.000822253 (4-{(r)-hydroxy[(3r)-5-oxo-4-(3-phenylpropyl)-3-morpholinyl]methyl} phenyl)-2-thiophenecarboxamide 0.556594851 0.01902366 腺嘌呤 Adenine 0.582263258 0.030055647 2-(tert-butyl)-6-[(4-chlorophenyl)sulfonyl]pyrazolo[1,5-a]pyrimidin-7-amine 0.613601938 0.04871511 乙酸异丁酯 Azidoindolene 1 0.671186827 0.013985625 2-{2-oxo-2-[4-(1h-pyrrol-1-yl)piperidino]ethoxy}acetic acid 0.675815639 0.009152107 龙胆苦苷 Gentiopicrin 0.737975126 0.0019069 {[(2s,5as,8ar)-1-methyl-5-oxo-2-[3-oxo-3-(2-propyn-1-ylamino)propyl] octahydropyrrolo[3,2-e][1,4]diazepin-6(1h)-yl]methyl}benzoic acid 1.39552841 0.034461568 紫苏烯 Perillene 1.434996617 0.048258974 (3s,4r)-3-(1-hydroxyhexyl)-4-(hydroxymethyl)oxolan-2-one 1.496159643 0.01609641 2,2-二羟甲基丙酸 2,2-bis(hydroxymethyl)propionic acid 1.669194028 0.035891706 β-细辛醚 β-Asarone 1.688749622 0.035694442 己基肉桂醛 Hexylcinnamaldehyde 1.709634669 0.039710719 Methyl 4-methoxy-1h-indole-2-carboxylate 2.543122217 0.043106317 洋川芎内酯h Senkyunolide h 2.720520745 0.014978895 Sts-135 2.727222075 0.03044568 (4as,9ar)-7-(2-acetamidoethyl)-n-allyl-6-oxodecahydro-2h-pyrido[3,4-d] azepine-2-carboxamide 2.872598342 0.034032236 (3β,9ξ)-3,14-dihydroxycarda-5,20(22)-dienolide 3.059240536 0.040582459 柠檬醛 Citral 3.12672361 0.020404139 反-2-甲基-2-戊烯酸 trans-2-Methyl-2-pentenoic Acid 3.243068259 0.04086777 滨蒿内酯 Scoparone 4.075749941 0.038073018 7-甲氧基-4-甲基香豆素 7-Methoxy-4-methylcoumarin 6.469336085 0.025506341 羟基-2-甲氧基苯基β-D-吡喃葡萄糖苷 4-(2-hydroxyethyl)-2-methoxyphenyl β-d-glucopyranoside 6.536820919 0.024910298 乙酰胆碱 Acetylcholine 14.87674752 0.007165993 注:变化倍数是指盐处理后盐囊泡内代谢物含量相对于对照处理条件下该代谢物含量的比值,数据来自于6个生物学重复的平均值。P值代表差异显著程度,P值越小表明差异越显著。 为了进一步了解差异代谢物参与的生化通路,使用KEGG数据库对差异代谢物进行代谢通路富集分析,结果表明(表2):差异代谢物显著富集于6条代谢通路中,包括植物激素信号传导、玉米素生物合成、α亚麻酸代谢、甘油磷脂代谢、酪氨酸代谢以及嘌呤代谢。
表 2 差异代谢物代谢通路富集分析
代谢通路 P值 代谢通路ID KEGG IDs 植物激素信号转导 0.00582837 map04075 C08491 玉米素生物合成 0.01883194 map00908 C00147 α-亚麻酸代谢 0.02122334 map00592 C08491 甘油磷脂代谢 0.02503882 map00564 C01996 酪氨酸代谢 0.03734798 map00350 C06199 嘌呤代谢 0.04532139 map00230 C00147 注:P<0.05的代谢通路为差异代谢物显著富集的代谢通路,P<0.01的代谢通路为差异代谢物极显著富集的代谢通路。
Comparative metabolomic analysis of epidermal bladder cells in Mesembryanthemum crystallinum under salt stress
-
摘要: 为了研究盐胁迫下冰菜(Mesembryanthemum crystallinum)盐囊泡中代谢物的变化,通过液相色谱串联质谱(LC-MS/MS)技术对对照以及盐处理下冰菜的盐囊泡中的代谢物进行了鉴定及分析,共在冰菜盐囊泡中确定了356个已知代谢物。对差异代谢物的筛选结果表明,有37种代谢物的含量在盐处理后的盐囊泡中发生了显著变化。基于KEGG数据库对差异代谢物进行的代谢通路富集分析表明,KEGG中定义的植物激素信号传导、玉米素生物合成及嘌呤代谢等6条生化途径存在显著扰动。以上结果显示,盐处理能造成冰菜盐囊泡中的代谢物发生显著变化。Abstract: To investigate the changes of metabolites in epidermal bladder cells of the halophytic species Mesembryanthemum crystallinum under salt stress, the metabolites in the epidermal bladder cells of M. crystallinum under control and salt stress were identified and analyzed by using the liquid chromatography tandem mass spectrometry (LC-MS/MS), and a total of 356 known metabolites were identified in the epidermal bladder cells. Analysis of differential metabolites showed that the levels of 37 metabolites in the epidermal bladder cells were significantly changed under the salt stress. Metabolic pathway enrichment analysis of the differential metabolites based on the KEGG database showed significant perturbations in six biochemical pathways defined in KEGG, such as phytohormone signaling, zeatin biosynthesis, purine metabolism, etc. These results indicate that salt treatment can cause significant changes in metabolites in epidermal bladder cells of M. crystallinum .
-
Key words:
- salt stress /
- Mesembryanthemum crystallinum /
- epidermal bladder cells /
- metabolome
-
表 1 盐处理及对照条件下冰菜盐囊泡核心差异代谢分析
代谢物名称 变化倍数 P值 13(s)-hotre 0.15570994 0.030264727 茉莉酸 Jasmonic acid 0.218569326 0.022545339 甲基双酮 19-norandrostenedione 0.229452659 0.008855389 α-雌二醇 Α-estradiol 0.248734898 0.009438115 Methyl 2-{[2-o-(6-deoxy-α-l-mannopyranosyl)-β-d-glucopyranosyl]oxy}benzoate 0.349857598 0.016001883 N4-(2-methoxyphenyl)-7-nitro-2,1,3-benzoxadiazol-4-amine 0.417636789 0.001939085 11β-羟基雄甾酮 11β-hydroxyandrosterone 0.426117111 0.003515696 Methyl 2-{[2-o-(6-deoxy-α-l-mannopyranosyl)-β-d-glucopyranosyl]oxy}benzoate 0.430390925 0.033490336 (tert-butyl)-2,3,5,6,8,9,11,12-octahydro-1,4,7,10,13- benzopentaoxacyclopentadecine 0.450408981 0.030006846 十六碳烷二酸 Hexadecanedioic acid 0.461182594 0.031592167 反式对香豆酰基酪胺 (2e)-3-(4-hydroxyphenyl)-n-[2-(4-hydroxyphenyl)ethyl]acrylamide 0.469959388 0.032433379 [(3r,4s)-3-({5-[(phenylsulfanyl)methyl]-1,2-oxazol-3-yl}methyl)-4-piperidinyl] -n-(1,3-thiazol-2-yl)acetamide 0.533747968 0.006560631 N-苄基甲酰胺 N-benzylformamide 0.546190634 0.013117271 大麦芽碱 Hordenine 0.556389125 0.000822253 (4-{(r)-hydroxy[(3r)-5-oxo-4-(3-phenylpropyl)-3-morpholinyl]methyl} phenyl)-2-thiophenecarboxamide 0.556594851 0.01902366 腺嘌呤 Adenine 0.582263258 0.030055647 2-(tert-butyl)-6-[(4-chlorophenyl)sulfonyl]pyrazolo[1,5-a]pyrimidin-7-amine 0.613601938 0.04871511 乙酸异丁酯 Azidoindolene 1 0.671186827 0.013985625 2-{2-oxo-2-[4-(1h-pyrrol-1-yl)piperidino]ethoxy}acetic acid 0.675815639 0.009152107 龙胆苦苷 Gentiopicrin 0.737975126 0.0019069 {[(2s,5as,8ar)-1-methyl-5-oxo-2-[3-oxo-3-(2-propyn-1-ylamino)propyl] octahydropyrrolo[3,2-e][1,4]diazepin-6(1h)-yl]methyl}benzoic acid 1.39552841 0.034461568 紫苏烯 Perillene 1.434996617 0.048258974 (3s,4r)-3-(1-hydroxyhexyl)-4-(hydroxymethyl)oxolan-2-one 1.496159643 0.01609641 2,2-二羟甲基丙酸 2,2-bis(hydroxymethyl)propionic acid 1.669194028 0.035891706 β-细辛醚 β-Asarone 1.688749622 0.035694442 己基肉桂醛 Hexylcinnamaldehyde 1.709634669 0.039710719 Methyl 4-methoxy-1h-indole-2-carboxylate 2.543122217 0.043106317 洋川芎内酯h Senkyunolide h 2.720520745 0.014978895 Sts-135 2.727222075 0.03044568 (4as,9ar)-7-(2-acetamidoethyl)-n-allyl-6-oxodecahydro-2h-pyrido[3,4-d] azepine-2-carboxamide 2.872598342 0.034032236 (3β,9ξ)-3,14-dihydroxycarda-5,20(22)-dienolide 3.059240536 0.040582459 柠檬醛 Citral 3.12672361 0.020404139 反-2-甲基-2-戊烯酸 trans-2-Methyl-2-pentenoic Acid 3.243068259 0.04086777 滨蒿内酯 Scoparone 4.075749941 0.038073018 7-甲氧基-4-甲基香豆素 7-Methoxy-4-methylcoumarin 6.469336085 0.025506341 羟基-2-甲氧基苯基β-D-吡喃葡萄糖苷 4-(2-hydroxyethyl)-2-methoxyphenyl β-d-glucopyranoside 6.536820919 0.024910298 乙酰胆碱 Acetylcholine 14.87674752 0.007165993 注:变化倍数是指盐处理后盐囊泡内代谢物含量相对于对照处理条件下该代谢物含量的比值,数据来自于6个生物学重复的平均值。P值代表差异显著程度,P值越小表明差异越显著。 表 2 差异代谢物代谢通路富集分析
代谢通路 P值 代谢通路ID KEGG IDs 植物激素信号转导 0.00582837 map04075 C08491 玉米素生物合成 0.01883194 map00908 C00147 α-亚麻酸代谢 0.02122334 map00592 C08491 甘油磷脂代谢 0.02503882 map00564 C01996 酪氨酸代谢 0.03734798 map00350 C06199 嘌呤代谢 0.04532139 map00230 C00147 注:P<0.05的代谢通路为差异代谢物显著富集的代谢通路,P<0.01的代谢通路为差异代谢物极显著富集的代谢通路。 -
[1] AGARIE S, KAWAGUCHI A, KODERA A, et al. Potential of the common ice plant, Mesembryanthemum crystallinum as a new high-functional food as evaluated by polyol accumulation[J]. Plant Production Science, 2009, 12(1): 37 − 46. doi: 10.1626/pps.12.37 [2] LUTTGE U, FISCHER E, STEUDLE E. Membrane potentials and salt distribution in epidermal bladders and photosynthetic tissue of Mesembryanthemum crystallinum L[J]. Plant Cell and Environment, 1978, 1(2): 121 − 129. doi: 10.1111/j.1365-3040.1978.tb00753.x [3] ADAMS P, NELSON D E, YAMADA S, et al. Growth and development of Mesembryanthemum crystallinum (Aizoaceae)[J]. The New Phytologist, 1998, 138(2): 171 − 190. doi: 10.1046/j.1469-8137.1998.00111.x [4] BARKLA B J, VERA-ESTRELLA R, HERNáNDEZ-CORONADO M, et al. Quantitative proteomics of the tonoplast reveals a role for glycolytic enzymes in salt tolerance[J]. The Plant Cell, 2009, 21(12): 4044 − 4058. [5] CUSHMAN J C, BOHNERT H J. CRASSULACEAN ACID METABOLISM: molecular genetics[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1999, 50: 305 − 332. doi: 10.1146/annurev.arplant.50.1.305 [6] STEUDLE E, LÜTTGE U,ZIMMERMANN U. Water relations of the epidermal bladder cells of the halophytic species Mesembryanthemum crystallinum: direct measurements of hydrostatic pressure and hydraulic conductivity[J]. Planta, 1975, 126(3): 229 − 246. doi: 10.1007/BF00388965 [7] PAUL M J, COCKBURN W. Pinitol, a compatible solute in Mesembryanthemum crystallinum L[J]. Journal of Experimental Botany, 1989, 40(10): 1093 − 1098. doi: 10.1093/jxb/40.10.1093 [8] VERNON D M, BOHNERT H J. A novel methyl transferase induced by osmotic stress in the facultative halophyte Mesembryanthemum crystallinum[J]. The EMBO Journal, 1992, 11(6): 2077 − 2085. doi: 10.1002/j.1460-2075.1992.tb05266.x [9] VOGT T, IBDAH M, SCHMIDT J, et al. Light-induced betacyanin and flavonol accumulation in bladder cells of Mesembryanthemum crystallinum[J]. Phytochemistry, 1999, 52(4): 583 − 592. doi: 10.1016/S0031-9422(99)00151-X [10] WAGNER G J, WANG E, SHEPHERD R W. New approaches for studying and exploiting an old protuberance, the plant trichome[J]. Annals of Botany, 2004, 93(1): 3-11. [11] BARKLA B J, VERA-ESTRELLA R, PANTOJA O. Protein profiling of epidermal bladder cells from the halophyte Mesembryanthemum crystallinum[J]. Proteomics, 2012, 12: 2862 − 2865. doi: 10.1002/pmic.201200152 [12] OH D H, BARKLA B J, VERA-ESTRELLA R, et al. Cell type-specific responses to salinity-the epidermal bladder cell transcriptome of Mesembryanthemum crystallinum[J]. The New Phytologist, 2015, 207(3): 627 − 644. doi: 10.1111/nph.13414 [13] WEN B, MEI Z, ZENG C, et al. MetaX: a flexible and comprehensive software for processing metabolomics data[J]. BMC Bioinformatics, 2017, 18: 183. doi: 10.1186/s12859-017-1579-y [14] FIEHN O. Metabolomics:the link between genotypes and phenotypes[J]. Plant Molecular Biology, 2002, 48(1/2): 155 − 171. doi: 10.1023/A:1013713905833 [15] EBERT B, ZöLLER D, ERBAN A, et al. Metabolic profiling of Arabidopsis thaliana epidermal cells[J]. Journal of Experimental Botany, 2010, 61(5): 1321 − 1335. doi: 10.1093/jxb/erq002 [16] TANI T, SOBAJIMA H, OKADA K, et al. Identification of the OsOPR7 gene encoding 12-oxophytodienoate reductase involved in the biosynthesis of jasmonic acid in rice[J]. Planta, 2008, 227(3): 517 − 526. doi: 10.1007/s00425-007-0635-7 [17] 牛改利. 根施乙酰胆碱对模拟干旱下烟草抗旱生理及光合特性的影响[D]. 杨凌: 西北农林科技大学, 2019. [18] QIN C, SU Y Y, LI B S, et al. Acetylcholine mechanism of action to enhance tolerance to salt stress in Nicotiana benthamiana[J]. Photosynthetica, 2019, 57(2): 590 − 598. doi: 10.32615/ps.2019.084 [19] 张乐, 郭欢, 包爱科. 盐生植物的独特泌盐结构-盐囊泡[J]. 植物生理学报, 2019, 55(3): 232 − 240. [20] CUSHMAN J C, BOHNERT H J. Molecular genetics of crassulacean acid metabolism[J]. Plant Physiology, 1997, 113(3): 667 − 676. doi: 10.1104/pp.113.3.667 [21] LÓPEZ-BUCIO J, NIETO-JACOBO M F, RAMíREZ-RODRíGUEZ V, et al. Organic acid metabolism in plants, from adaptive physiology to transgenic varieties for cultivation in extreme soils[J]. Plant Science, 2000, 160(1): 1 − 13. doi: 10.1016/S0168-9452(00)00347-2