-
水稻细菌性条斑病是水稻粮食生产中的重要病害,由稻黄单胞菌稻生致病变种(Xanthomonas oryzae pv. oryzicola,Xoc)引起,主要发病区域为热带和亚热带[1]。Xoc通过气孔进入叶片,先进入气孔下腔,后在薄壁组织的细胞间隙中定殖,使叶片表面产生条斑病症,造成水稻减产[2]。在定植过程中,黄单胞菌产生的胞外酶、胞外多糖以及其他效应因子都起到重要作用[3]。如通过分泌蛋白酶、淀粉酶和纤维素酶来降解植物相应的细胞壁成分,使细菌成功入侵植物组织[4]。
乙酰化修饰是细胞内蛋白的主要修饰方式之一,乙酰基团通常以乙酰辅酶A(AcCoA)或乙酰磷酸酯(AcP)的形式存在[5]。细菌蛋白乙酰化具有多种功能,如调节DNA复制、转录和修复等DNA过程和通过修饰组蛋白和转录因子调节基因表达等,对于细菌致病力、抗逆性和生长都具有重要作用[6]。
细菌蛋白乙酰化修饰主要为赖氨酸乙酰化,而GNAT(GCN5 related N-acetyltransferases)是最大的赖氨酸乙酰转移酶家族。GNAT结构高度保守,根据其结构特征可以分为3大类(ClassⅠ-Ⅲ)5种小类(Type Ⅰ-Ⅴ)[7]。Xoc编码1个Type Ⅰ和5个Type Ⅳ 类GNAT乙酰转移酶。Type Ⅰ类是包含C-端 GNAT结构域的多结构域乙酰转移酶,以YfiQ及其同源物为代表。YfiQ在细菌酸、高温和活性氧胁迫中发挥作用,但其作用机制还不清楚[8]。Type Ⅳ 类为单GNAT结构域乙酰转移酶,通常长度为150~200个氨基酸。Type Ⅳ 类乙酰转移酶在蛋白质乙酰化作用上弱于Type Ⅰ类。但许多Ⅳ型GNAT具有赖氨酸乙酰化以外的活性。例如,大肠杆菌中的RimI除乙酰化赖氨酸外,也是N-α-乙酰转移酶[9–10]。黄单胞菌中乙酰转移酶的相关研究很少。白叶枯病菌乙酰转移酶Pxo_00987参与细菌鞭毛糖基化的修饰,突变导致病原菌致病性下降[11]。Xcv(X. campestris pv.vesicatoria)和Xcc(X. campestrispv. campestris)中的Ⅲ型效应因子AvrBsT(YpoJ同源蛋白)可通过 O-乙酰化方式修饰宿主蛋白,调控病原菌与植物互作[12,13]。而在Xoc中,乙酰转移酶的作用还未见报道。为分析GNAT类乙酰转移酶在Xoc中的作用,本研究首先通过生物信息学方法预测Xoc中的GNAT家族蛋白,然后通过同源重组双交换的方法创建这些基因的单突和多突突变菌株,进而比较这些突变体与野生型Xoc的生长速度和致病力,以及致病相关因子(胞外酶和运动能力)的差异。该研究将为进一步解析GNAT类乙酰转移酶的功能及调控通路奠定了基础,对水稻细菌性条斑病的防治有一定的促进作用。
-
Xoc模式菌株RS105和载体pK18mobsacB[14]为笔者所在实验室保存,大肠杆菌感受态购自基睿生物科技有限公司。
-
蔗糖蛋白胨培养基(Peptone Sucrose Agar,PSA):1%胰蛋白胨,1%蔗糖,0.1% L-谷氨酸钠;蔗糖蛋白胨筛选培养基:1%胰蛋白胨,15%蔗糖,0.1%L-谷氨酸钠;葡萄糖蛋白胨培养基(Peptone Glucose Agar,PGA):1%胰蛋白胨,1%葡萄糖,0.1%L-谷氨酸钠;卢里亚-贝尔塔尼培养基(Luria-Bertani,LB):1%胰蛋白胨,1%NaCl,0.5%酵母提取物;改良M4培养基(modified M4 medium,M4M):0.048% Na2HPO4,0.03% KH2PO4,0.05%柠檬酸钠,0.1%(NH4)2SO4,0.02% MgSO4·7H2O,0.05%酶水解酪素,0.05%葡萄糖;相应固体培养基另加1.5%琼脂。通用型DNA回收试剂盒和质粒小提试剂盒购自天根生化科技有限公司,高保真DNA聚合酶购自诺唯赞生物科技有限公司,限制性核酸内切酶及T4连接酶购自NEB公司,其他试剂购自Sigma-Aldrich公司或索莱宝生物科技有限公司。
-
根据被敲除基因两端序列,使用SnapGene软件进行序列分析和引物设计,由生工生物公司(广州)分公司合成引物(表1)。
表 1 引物序列
名称 序列 xocmindFF GACGAAGCTTCAGCCAGAAGTAGCTGGCAC xocmindFR ACACGGATCCATCGAGCTCGTGCTCGCGCAC xoc1292ddRF ACACGGATCCGTGTCGGTCGCGCGTTCTATG xoc1292ddRR GACGTCTAGACACGTCCGGCACCTGCGACAG xoc2699ddFF ACTGAAGCTTGATCAATACCTCGGTCGGTC xoc2699ddFR CTGCTCTAGACATGTGGTCAGTCGATGTAG xoc2699ddRF CTGCTCTAGACCTCCTTCTGATGAAAACCC xoc2699ddRR CTACGAATTCCATCTTGCCGAAGAATCCCA xoc0450ddFF ACTGAAGCTTCGGTGGTCCCGTATCCGAAG xoc0450ddFR CTGCTCTAGAGTGGTACGTACTCATCGGAC xoc0450ddRF CTGCTCTAGAGGACGATGCGACCATGATGG xoc0450ddRR CTACGAATTCGACGGATAGTTGTCGGTCAG xoc3825ddFF ACTGAAGCTTCAGAGCTGCCATGAGCGTGT xoc3825ddFR CTGCTCTAGAGGCACGTTCAATGCGCTCAC xoc3825ddRF CTGCTCTAGACGTTGGTGATGGCGATCGAG xoc3825ddRR CTACGAATTCCGTTAGTCGTTGCAACCCGT xoc1598ddFF ACTGAAGCTTCTCAAGAAGCATCTCGGCGA xoc1598ddFR CTGCTCTAGATGGCCATGACCGGTGTTCCT xoc1598ddRF CTGCTCTAGATGGAGCTGGATGCCTGAGGT xoc1598ddRR CTACGAATTCGAAGGTAGGCGACGGCATCA xoc4123ddFF ACTGAAGCTTGGTAGGCGTCACGAACAGAT xoc4123ddFR CTGCTCTAGAGTGCATTGGGTCCGAGAAAC xoc4123ddRF CTGCTCTAGAGACTAGGTGCGGTGACCAAG xoc4123ddRR CTACGAATTCCCTTGACCATGACCTTGGTC 注:下划线表示酶切位点。 -
通过KEGG获取乙酰转移酶的基因序列与氨基酸序列,利用MEGA进行聚类分析[15]。通过NCBI CDD进行蛋白结构域预测,并用TBtools作图[16]。
-
以Xoc模式菌株RS105的基因组为模板,PCR扩增目的基因上下游约500 bp的片段,酶切回收后连接在pK18mobsacB载体上,转化大肠杆菌感受态,经PCR鉴定及测序确定后获得敲除载体pK18-xoc_1292、pK18-xoc_2699、pK18-xoc_0450、pK18-xoc_3825、pK18-xoc_1598、pK18-xoc_4123,通过三亲接合法将构好的pK18mobsacB自杀质粒转入RS105菌株中,经过同源交换后获得突变体菌株。
-
将RS105和突变体菌株于28 ℃培养24 h,离心收集菌体,ddH2O清洗2遍,调OD600=1.0,稀释至10−6,共6个梯度,取1 μL菌悬液分别在PSA和M4M固体培养基上点板,28 ℃倒置培养,2~3 d观察拍照。
-
采用打孔法接种‘TP309’水稻[17]。待接种菌株培养至对数生长期,调OD600=1.0,用直径3 mm打孔器蘸取菌液,于叶片距叶尖约5 cm叶脉处打孔接种,分别接种野生型与突变体。21 d后量取病斑长度,记录并拍照,分析实验结果。
-
将待测菌株于28 ℃培养24 h,离心收集菌体,ddH2O清洗2次,调OD600=1.0,取2 μL菌液分别点在加入脱脂奶粉,可溶性淀粉和羧甲基纤维素的PSA固体培养基上,培养48 h。含有可溶性淀粉和羧甲基纤维素的平板分别使用 1∶100的I2-KI混合液(0.08 mol·L−1 I2,3.2 mol·L−1 KI )和0.1%刚果红染液染色。胞外酶活性可以通过比较D/d(水解产物直径D和菌落直径d)的大小来鉴定,比值越大,菌株产酶能力越强[18]。
-
(1)游动性:将待测菌株于28 ℃培养24 h,离心收集菌体,ddH2O
清洗2次,调OD600=1.0。用牙签蘸取菌液,垂直接种于游动性检测培养基NY2底部,28 ℃正置培养4 d。WT作为阳性对照。拍照记录,并测量菌落游动直径。(2)蠕动性:将待测菌株于28 ℃培养24 h,离心收集菌体,ddH2O清洗2次,调OD600=1.0。取2 μL菌液接种于蠕动性检测培养基NY1表面,28 ℃正置培养,WT作为阳性对照。拍照记录,并测量菌落蠕动直径[19]。
GNAT acetyltransferase regulates the growth and virulence of Xanthomonas oryzae pv. oryzicola
-
摘要: 为探究GNAT乙酰转移酶在稻黄单胞菌稻生致病变种(Xanthomonas oryzae pv. oryzicola,Xoc)中的功能,本研究首先对GNAT家族蛋白进行了结构域分析,随后构建了GNAT编码基因的单突及多突突变体,并比较了野生型菌株和这些突变菌株间的生长速度、胞外酶活性和致病力的差异。结果发现:在营养缺乏条件下,除xoc_1598突变体和敲除全部GNAT类乙酰转移酶基因的6突突变体外,其他所有突变体的生长都弱于野生型,说明此类乙酰转移酶调控Xoc的生长。此外,所有GNAT类乙酰转移酶突变都导致Xoc致病力下降。同时还发现此类乙酰转移酶对运动性、胞外蛋白酶和淀粉酶活性也有调控作用。实验结果表明,乙酰化修饰是Xoc生长和致病力的重要调节机制。Abstract: To investigate the function of GNAT acetyltransferases in Xanthomonas oryzae pv. oryzicola (Xoc), a pathogen of rice bacterial leaf streak, we performed domain analysis of GNAT family proteins in Xoc, and then constructed the single and multiple mutants of these GNAT genes. Finally, we compared the growth rates, extracellular enzyme activities, and virulence of these mutants and the wild type Xoc strains. The results showed that GNAT acetyltransferases regulated Xoc growth in nutrient deficiency media. All mutants except Δxoc_1598 and Δ6 grew more slowly than the wild type, and had lower ability of infection than the wild type strain. We also found that mutation in acetyltransferases could alter motility and the activities of the extracellular protease and amylase. All the results showed that protein acetylation is an important regulatory mechanism for Xoc growth and virulence as well as the virulence-related factors′ production.
-
Key words:
- Xanthomonas oryzae pv. oryzicola /
- acetyltransferase /
- extracellular enzyme /
- virulence
-
图 2 Xoc乙酰转移酶突变体的PCR验证
(a).Δ6基因组PCR产物电泳图。(b). Δ5基因组PCR产物电泳图。(c).Δ4基因组PCR产物电泳图。(d).Δxoc_1292/2699/3825基因组PCR产物电泳图。(e).Δxoc_1292/2699/0450基因组PCR产物电泳图。(f).Δxoc_1292/2699基因组PCR产物电泳图。(g).Δxoc_1292/0450基因组PCR产物电泳图。(h).Δxoc_1292/3825基因组PCR产物电泳图。(i).突变体Δxoc_1292/1598基因组PCR产物电泳图。(j).突变体Δxoc_1292/4123基因组PCR产物电泳图。(k).野生型及单突突变体基因组PCR产物电泳图。基因组标注在图上面,引物标注在下面。M:DL 5 000 maker。Negative:以ddH2O为模板的PCR产物;WT:以RS105基因组为模板的PCR产物。
表 1 引物序列
名称 序列 xocmindFF GACGAAGCTTCAGCCAGAAGTAGCTGGCAC xocmindFR ACACGGATCCATCGAGCTCGTGCTCGCGCAC xoc1292ddRF ACACGGATCCGTGTCGGTCGCGCGTTCTATG xoc1292ddRR GACGTCTAGACACGTCCGGCACCTGCGACAG xoc2699ddFF ACTGAAGCTTGATCAATACCTCGGTCGGTC xoc2699ddFR CTGCTCTAGACATGTGGTCAGTCGATGTAG xoc2699ddRF CTGCTCTAGACCTCCTTCTGATGAAAACCC xoc2699ddRR CTACGAATTCCATCTTGCCGAAGAATCCCA xoc0450ddFF ACTGAAGCTTCGGTGGTCCCGTATCCGAAG xoc0450ddFR CTGCTCTAGAGTGGTACGTACTCATCGGAC xoc0450ddRF CTGCTCTAGAGGACGATGCGACCATGATGG xoc0450ddRR CTACGAATTCGACGGATAGTTGTCGGTCAG xoc3825ddFF ACTGAAGCTTCAGAGCTGCCATGAGCGTGT xoc3825ddFR CTGCTCTAGAGGCACGTTCAATGCGCTCAC xoc3825ddRF CTGCTCTAGACGTTGGTGATGGCGATCGAG xoc3825ddRR CTACGAATTCCGTTAGTCGTTGCAACCCGT xoc1598ddFF ACTGAAGCTTCTCAAGAAGCATCTCGGCGA xoc1598ddFR CTGCTCTAGATGGCCATGACCGGTGTTCCT xoc1598ddRF CTGCTCTAGATGGAGCTGGATGCCTGAGGT xoc1598ddRR CTACGAATTCGAAGGTAGGCGACGGCATCA xoc4123ddFF ACTGAAGCTTGGTAGGCGTCACGAACAGAT xoc4123ddFR CTGCTCTAGAGTGCATTGGGTCCGAGAAAC xoc4123ddRF CTGCTCTAGAGACTAGGTGCGGTGACCAAG xoc4123ddRR CTACGAATTCCCTTGACCATGACCTTGGTC 注:下划线表示酶切位点。 -
[1] AWODERV V A, BANGURA N, JOHN V T. Incidence, distribution and severity of bacterial diseases on rice in West Africa[J]. Tropical Pest Management, 1991, 37(2): 113 − 117. [2] NIñO-LIU D O, RONALD P C, BOGDANOVE A J. Xanthomonas oryzae pathovars: model pathogens of a model crop[J]. Molecular Plant Pathology, 2006, 7(5): 303 − 324. doi: 10.1111/j.1364-3703.2006.00344.x [3] BüTTNER D, BONAS U. Regulation and secretion of Xanthomonas virulence factors[J]. FEMS Microbiology Reviews, 2010, 34(2): 107 − 133. doi: 10.1111/j.1574-6976.2009.00192.x [4] PFEILMEIER S, CALY D L, MALONE J G. Bacterial pathogenesis of plants: future challenges from a microbial perspective: Challenges in bacterial molecular plant pathology[J]. Molecular Plant Pathology, 2016, 17(8): 1298 − 1313. doi: 10.1111/mpp.12427 [5] HENTCHEL K L, ESCALANTE-SEMERENA J C. Acylation of biomolecules in prokaryotes: a widespread strategy for the control of biological function and metabolic stress[J]. Microbiology and Molecular Biology Reviews, 2015, 79(3): 321 − 346. doi: 10.1128/MMBR.00020-15 [6] XIE L, ZENG J, LUO H, et al. The roles of bacterial GCN5-related N-acetyltransferases[J]. Critical Reviews™ in Eukaryotic Gene Expression, 2014, 24(1): 77-87. [7] CHRISTENSEN D G, BAUMGARTNER J T, XIE X, et al. Mechanisms, detection, and relevance of protein acetylation in prokaryotes[J]. mBio, 2019, 10(2): e02708 − e02718. [8] LIU W, TAN Y, CAO S, et al. Protein acetylation mediated by YfiQ and CobB is involved in the virulence and stress response of Yersinia pestis[J]. Infection and Immunity, 2018, 86(6): e00224 − e00218. [9] YOSHIKAWA A, ISONO S, SHEBACK A, et al. Cloning and nucleotide sequencing of the genes rimI and rimJ which encode enzymes acetylating ribosomal proteins S18 and S5 of Escherichia coli K12[J]. Molecular & General Genetics MGG, 1987, 209(3): 481 − 488. doi: 10.1007/BF00331153 [10] PATHAK D, BHAT A H, SAPEHIA V, et al. Biochemical evidence for relaxed substrate specificity of Nα-acetyltransferase (Rv3420c/rimI) of Mycobacterium tuberculosis[J]. Scientific Reports, 2016, 6(1): 28892. doi: 10.1038/srep28892 [11] LI H, YU C, CHEN H, et al. PXO00987, a putative acetyltransferase, is required for flagellin glycosylation, and regulates flagellar motility, exopolysaccharide production, and biofilm formation in Xanthomonas oryzae pv. oryzae[J]. Microbial Pathogenesis, 2015, 85: 50 − 57. doi: 10.1016/j.micpath.2015.06.001 [12] CHEONG M S, KIRIK A, KIM J G, et al. AvrBsT acetylates Arabidopsis ACIP1, a protein that associates with microtubules and is required for immunity[J]. PLoS pathogens, 2014, 10(2): e1003952. doi: 10.1371/journal.ppat.1003952 [13] HAN S W, HWANG B K. Molecular functions of Xanthomonas type III effector AvrBsT and its plant interactors in cell death and defense signaling[J]. Planta, 2017, 245(2): 237 − 253. doi: 10.1007/s00425-016-2628-x [14] SCHäFER A, TAUCH A, JäGER W, et al. Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum[J]. Gene, 1994, 145(1): 69 − 73. doi: 10.1016/0378-1119(94)90324-7 [15] KUMAR S, STECHER G, TAMURA K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets[J]. Molecular Biology and Evolution, 2016, 33(7): 1870 − 1874. doi: 10.1093/molbev/msab120 [16] CHEN C, CHEN H, ZHANG Y, et al. TBtools: an integrative toolkit developed for interactive analyses of big biological data[J]. Molecular plant, 2020, 13(8): 1194 − 1202. doi: 10.1016/j.molp.2020.06.009 [17] 赵严, 罗登杰, 何圣贤等. 水稻细菌性条斑病4种接种方法的比较[J]. 亚热带农业研究, 2018, 14(4): 242 − 246. doi: 10.13321/j.cnki.subtrop.agric.res.2018.04.005 [18] 韦梅良. 用野油菜黄单胞菌插入突变体库筛选与胞外蛋白酶产生相关的基因[D]. 南宁:广西大学, 2002. [19] ZHANG Z C, ZHAO M, XU L D, et al. Genome-wide screening for novel candidate virulence related response regulator genes in Xanthomonas oryzae pv. oryzicola[J]. Frontiers in Microbiology, 2018, 9: 1789. doi: 10.3389/fmicb.2018.01789 [20] HENTCHEL K L, ESCALANTE-SEMERENA J C. In Salmonella enterica, the Gcn5-related acetyltransferase MddA (formerly YncA) acetylates methionine sulfoximine and methionine sulfone, blocking their toxic effects[J]. Journal of bacteriology, 2015, 197(2): 314 − 325. doi: 10.1128/JB.02311-14 [21] YU M, DE CARVALHO L P S, SUN G, et al. Activity-based substrate profiling for Gcn5-related N-acetyltransferases: the use of chloroacetyl-coenzyme a to identify protein substrates[J]. Journal of the American Chemical Society, 2006, 128(48): 15356 − 15357. doi: 10.1021/ja066298w [22] NAKAYASU E S, BURNET M C, WALUKIEWICZ H E, et al. Ancient regulatory role of lysine acetylation in central metabolism[J]. mBio, 2017, 8(6): e01817 − e01894. [23] REVERDY A, CHEN Y, HUNTER E, et al. Protein lysine acetylation plays a regulatory role in Bacillus subtilis multicellularity[J]. PLoS One, 2018, 13(9): e0204687. doi: 10.1371/journal.pone.0204687 [24] MARSH V L, PEAK-CHEW S Y, BELL S D. Sir2 and the acetyltransferase, Pat, regulate the archaeal chromatin protein, Alba[J]. The Journal of Biological Chemistry, 2005, 280(22): 21122 − 21128. doi: 10.1074/jbc.M501280200 [25] WANG Q, ZHANG Y, YANG C, et al. Acetylation of metabolic enzymes coordinates carbon source utilization and metabolic flux[J]. Science, 2010, 327(5968): 1004 − 1007. doi: 10.1126/science.1179687 [26] GREENE N P, CROW A, HUGHES C, et al. Structure of a bacterial toxin-activating acyltransferase[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(23): e3058−e3066. [27] WOLFE A J. Bacterial protein acetylation: new discoveries unanswered questions[J]. Current Genetics, 2016, 62(2): 335 − 341. doi: 10.1007/s00294-015-0552-4 [28] HOSP F, LASSOWSKAT I, SANTORO V, et al. Lysine acetylation in mitochondria: From inventory to function[J]. Mitochondrion, 2017, 33: 58 − 71. doi: 10.1016/j.mito.2016.07.012 [29] CARABETTA V J, CRISTEA I M. Regulation, function, and detection of protein acetylation in bacteria[J]. Journal of bacteriology, 2017, 199(16): e00107 − e00117.