留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

木棉稻田农林复合系统中丰富类和稀有类微生物的分布特征及影响因素

丁一鸣 董晓杰 马志泽 黄光耀 任明迅 王文娟

丁一鸣, 董晓杰, 马志泽, 黄光耀, 任明迅, 王文娟. 木棉稻田农林复合系统中丰富类和稀有类微生物的分布特征及影响因素[J]. 热带生物学报, 2025, 16(2): 270-280. doi: 10.15886/j.cnki.rdswxb.20240118
引用本文: 丁一鸣, 董晓杰, 马志泽, 黄光耀, 任明迅, 王文娟. 木棉稻田农林复合系统中丰富类和稀有类微生物的分布特征及影响因素[J]. 热带生物学报, 2025, 16(2): 270-280. doi: 10.15886/j.cnki.rdswxb.20240118
DING Yiming, DONG Xiaojie, MA Zhize, HUANG Guangyao, REN Mingxun, WANG Wenjuan. Distribution characteristics and influencing factors of abundant and rare microbial communities in Kapok-rice agroforestry systems[J]. Journal of Tropical Biology, 2025, 16(2): 270-280. doi: 10.15886/j.cnki.rdswxb.20240118
Citation: DING Yiming, DONG Xiaojie, MA Zhize, HUANG Guangyao, REN Mingxun, WANG Wenjuan. Distribution characteristics and influencing factors of abundant and rare microbial communities in Kapok-rice agroforestry systems[J]. Journal of Tropical Biology, 2025, 16(2): 270-280. doi: 10.15886/j.cnki.rdswxb.20240118

木棉稻田农林复合系统中丰富类和稀有类微生物的分布特征及影响因素

doi: 10.15886/j.cnki.rdswxb.20240118
基金项目: 

海南大学科研启动基金项目[KYQD (ZR)-21110

海南省自然科学基金项目(322QN247)

详细信息
    第一作者:

    丁一鸣(1997-)女,海南大学生态学院2021级硕士研究生。E-mail:362700610@qq.com

    通信作者:

    任明迅(1976-)男,教授,博士。研究方向:生物多样性与生态文化。E-mail:renmx@hainanu.edu.cn

    王文娟(1991-)女,讲师,博士。研究方向:群落生态学,土壤微生物生态学。E-mail:wangwj@hainanu.edu.cn

  • 中图分类号: S181

Distribution characteristics and influencing factors of abundant and rare microbial communities in Kapok-rice agroforestry systems

  • 摘要: 土壤微生物在农田生态系统功能方面发挥重要作用。然而,土壤微生物,特别是丰富类和稀有类微生物在农林复合系统中的分布规律还知之甚少。木棉稻田农林复合系统是长期保留在热带地区的一种传统农耕系统。本研究以海南省昌江县木棉稻田农林复合系统(Kapok-rice agroforestry system)为研究体系,分析与木棉树不同距离梯度上的稻田土壤中丰富类、稀有类细菌和真菌群落的分布特征及其与土壤因子的关系。结果表明:1)稀有类细菌的丰富度在靠近木棉的地方显著较高,而丰富类细菌和真菌的Shannon指数在靠近木棉的地方显著较低(P<0.05);2)稀有类和丰富类细菌和真菌的群落组成在与木棉树的不同距离梯度上均存在显著差异(ANOSIM:P=0.000 1);3)丰富类细菌α多样性与速效钾呈显著负相关,而稀有类细菌α多样性与总磷和有机质呈显著正相关;丰富类真菌α多样性与土壤因子无显著相关性,但稀有类真菌α多样性与土壤速效氮、速效磷和有机质呈显著正相关;土壤速效养分是丰富类细菌和真菌群落结构变异的关键驱动因子,而稀有类细菌和真菌群落结构变异的关键驱动因子不仅包括土壤速效养分,还包括有机质;总体而言,速效钾是影响丰富类和稀有类微生物空间分布的最重要因素。本研究揭示了木棉对稻田各土壤微生物类群分布特征及其主要驱动因子的影响,为木棉稻田农林复合系统在农业可持续发展中的应用提供理论支撑。
  • [1] ZECHMEISTER-BOLTENSTERN S, KEIBLINGER K M,MOOSHAMMER M, et al. The application of ecological stoichiometry to plant-microbial-soil organic matter transformations[J]. Ecological Monographs, 2015, 85(2):133-155.
    [2] JACOBY R, PEUKERT M, SUCCURRO A, et al. The role of soil microorganisms in plant mineral nutrition-current knowledge and future directions[J]. Frontiers in Plant Science, 2017, 8:1617.
    [3] SARDANS J, PEÑUELAS J. The role of plants in the effects of global change on nutrient availability and stoichiometry in the plant-soil system[J]. Plant Physiology,2012, 160(4):1741-1761.
    [4] LYNCH M D J, NEUFELD J D. Ecology and exploration of the rare biosphere[J]. Nature Reviews Microbiology,2015, 13(4):217-229.
    [5] NEMERGUT D R, COSTELLO E K, HAMADY M, et al.Global patterns in the biogeography of bacterial taxa[J]. Environmental Microbiology, 2011, 13(1):135-144.
    [6] ZHOU X, WU F. Land-use conversion from open field to greenhouse cultivation differently affected the diversities and assembly processes of soil abundant and rare fungal communities[J]. The Science of the Total Environment,2021, 788:147751.
    [7] MO Y, ZHANG W, YANG J, et al. Biogeographic patterns of abundant and rare bacterioplankton in three subtropical bays resulting from selective and neutral processes[J]. The ISME Journal, 2018, 12(9):2198-2210.
    [8] JIAO S, LU Y. Abundant fungi adapt to broader environmental gradients than rare fungi in agricultural fields[J]. Global Change Biology, 2020, 26(8):4506-4520.
    [9] DELGADO-BAQUERIZO M, OLIVERIO A M, BREWER T E, et al. A global atlas of the dominant bacteria found in soil[J]. Science, 2018, 359(6373):320-325.
    [10] XIONG C, HE J Z, SINGH B K, et al. Rare taxa maintain the stability of crop mycobiomes and ecosystem functions[J]. Environmental Microbiology, 2021, 23(4):1907-1924.
    [11] ZHANG W, PAN Y, YANG J, et al. The diversity and biogeography of abundant and rare intertidal marine microeukaryotes explained by environment and dispersal limitation[J]. Environmental Microbiology, 2018, 20(2):462-476.
    [12] LIU L, YANG J, YU Z, et al. The biogeography of abundant and rare bacterioplankton in the lakes and reservoirs of China[J]. The ISME Journal, 2015, 9(9):2068-2077.
    [13] SMITH L G, WESTAWAY S, MULLENDER S, et al.Assessing the multidimensional elements of sustainability in European agroforestry systems[J]. Agricultural Systems, 2022, 197:103357.
    [14] HONG Y, HEERINK N, JIN S, et al. Intercropping and agroforestry in China-Current state and trends[J]. Agriculture, Ecosystems&Environment, 2017, 244:52-61.
    [15] PANTERAΑ, MOSQUERA-LOSADA M R, HERZOG F,et al. Agroforestry and the environment[J]. Agroforestry Systems, 2021, 95(5):767-774.
    [16] GUILLOT E, HINSINGER P, DUFOUR L, et al. With or without trees:resistance and resilience of soil microbial communities to drought and heat stress in a Mediterranean agroforestry system[J]. Soil Biology and Biochemistry, 2019, 129:122-135.
    [17] BEULE L, VAUPEL A, MORAN-RODAS V E. Abundance,diversity, and function of soil microorganisms in temperate alley-cropping agroforestry systems:a review[J]. Microorganisms, 2022, 10(3):616.
    [18] BEULE L, GUERRA V, LEHTSAAR E, et al. Digging deeper:microbial communities in subsoil are strongly promoted by trees in temperate agroforestry systems[J]. Plant and Soil, 2022, 480(1):423-437.
    [19] ZHANG X, ZHAO W, KOU Y, et al. Secondary forest succession drives differential responses of bacterial communities and interactions rather than bacterial functional groups in the rhizosphere and bulk soils in a subalpine region[J]. Plant and Soil, 2023, 484(1):293-312.
    [20] DU S, DINI-ANDREOTE F, ZHANG N, et al. Divergent co-occurrence patterns and assembly processes structure the abundant and rare bacterial communities in a salt marsh ecosystem[J]. Applied and Environmental Microbiology, 2020, 86(13):e00322-e00320.
    [21] JIAO S, LU Y. Soil pH and temperature regulate assembly processes of abundant and rare bacterial communities in agricultural ecosystems[J]. Environmental Microbiology, 2020, 22(3):1052-1065.
    [22] 向文倩,王文娟,任明迅.木棉文化的生物多样性传统知识及其传承与利用[J]. 生物多样性, 2023, 31(3):186-197.
    [23] WANG W J, WEN J, XIANG W Q, et al. Soil bacterial and fungal communities respond differently to Bombax ceiba(Malvaceae)during reproductive stages of rice in a traditional agroforestry system[J]. Plant and Soil, 2022,479(1):543-558.
    [24] OKSANEN J B F G F, MCGLINN D M P R O,SOLYMOS P S M H M. Ordination methods, diversity analysis and other functions for community and vegetation ecologists[J]. Vegan:Community Ecol Package,2017:5-26.
    [25] LEFCHECK J S. piecewiseSEM:Piecewise structural equation modelling in R for ecology, evolution, and systematics[J]. Methods in Ecology and Evolution, 2016, 7(5):573-579.
    [26] WANG J, WANG Y, LI M, et al. Differential response of abundant and rare bacterial subcommunities to abiotic and biotic gradients across temperate deserts[J]. The Science of the Total Environment, 2021, 763:142942.
    [27] ŠŤOVÍČEK A, KIM M, OR D, et al. Microbial community response to hydration-desiccation cycles in desert soil[J]. Scientific Reports, 2017, 7:45735.
    [28] LI H Q, LI H, ZHOU X Y, et al. Distinct patterns of abundant and rare subcommunities in paddy soil during wetting-drying cycles[J]. The Science of the Total Environment, 2021, 785:147298.
    [29] WANG Y, LI F Y, SONG X, et al. Changes in litter decomposition rate of dominant plants in a semi-arid steppe across different land-use types:soil moisture, not home-field advantage, plays a dominant role[J]. Agriculture, Ecosystems&Environment, 2020, 303:107119.
    [30] EL ZAHAR HAICHAR F, SANTAELLA C, HEULIN T, et al. Root exudates mediated interactions belowground[J]. Soil Biology and Biochemistry, 2014, 77:69-80.
    [31] STEINAUER K, CHATZINOTAS A, EISENHAUER N.Root exudate cocktails:the link between plant diversity and soil microorganisms?[J]. Ecology and Evolution,2016, 6(20):7387-7396.
    [32] LI W, JIANG L, ZHANG Y, et al. Structure and driving factors of the soil microbial community associated with Alhagi sparsifolia in an arid desert[J]. PLoS One, 2021,16(7):e0254065.
    [33] RUI J, PENG J, LU Y. Succession of bacterial populations during plant residue decomposition in rice field soil[J]. Applied and Environmental Microbiology, 2009, 75(14):4879-4886.
    [34] MAESTRE F T, DELGADO-BAQUERIZO M, JEFFRIES T C, et al. Increasing aridity reduces soil microbial diversity and abundance in global drylands[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(51):15684-15689.
    [35] HALL S J, HUANG W J, TIMOKHIN V I, et al. Lignin lags, leads, or limits the decomposition of litter and soil organic carbon[J]. Ecology, 2020, 101(9):e03113.
    [36] PODOSOKORSKAYA O A, BONCH-OSMOLOVSKAYA E A, NOVIKOV A A, et al. Ornatilinea apprima gen. nov.,sp. nov., a cellulolytic representative of the class Anaerolineae[J]. International Journal of Systematic and Evolutionary Microbiology, 2013, 63(Pt 1):86-92.
    [37] DION P. Extreme views on prokaryote evolution[M] //DION P, NAUTIYAL C S, eds. Soil Biology. Berlin, Heidelberg:Springer Berlin Heidelberg, 2008:45-70.
    [38] LORENZ K, LAL R. Soil organic carbon sequestration in agroforestry systems. A review[J]. Agronomy for Sustainable Development, 2014, 34(2):443-454.
    [39] 祁栋灵,杨小波,谢贵水,等.以橡胶为主的农林复合生态系统对调控资源利用和生态服务功能的影响[J]. 生态学杂志, 2020, 39(11):3844-3852.
    [40] HOU J, WU L, LIU W, et al. Biogeography and diversity patterns of abundant and rare bacterial communities in rice paddy soils across China[J]. The Science of the Total Environment, 2020, 730:139116.
    [41] YANG X, LENG Y, ZHOU Z, et al. Ecological management model for the improvement of soil fertility through the regulation of rare microbial taxa in tea(Camellia sinensis L.)plantation soils[J]. Journal of Environmental Management, 2022, 308:114595.
    [42] PENG W, SONG T, DU H, et al. Soil properties and not plant factors affect both abundant and rare microbial taxa after thinning in a mixed stand of Cunninghamia lanceolata and Sassafras tzumu[J]. Journal of Forestry Research, 2023,35(1):18.
    [43] MASOOD S, BANO A. Mechanism of potassium solubilization in the agricultural soils by the help of soil microorganisms[M] //Meena V, Maurya B, Verma J, et al. Potassium Solubilizing Microorganisms for Sustainable Agriculture. New Delhi:Springer, 2016:137-147.
    [44] WU Y, CHEN D, SALEEM M, et al. Rare soil microbial taxa regulate the negative effects of land degradation drivers on soil organic matter decomposition[J]. Journal of Applied Ecology, 2021, 58(8):1658-1669.
  • [1] 李建聪, 陈新, 陈英洁, 刘胤仪, 唐敏.  亚热带海域污损真核微生物群落对水动力变化的响应研究 . 热带生物学报, 2025, 16(1): 115-124. doi: 10.15886/j.cnki.rdswxb.20240026
    [2] 吴冠糆, 曾庆羚, 丁一硕, 许誉馨, 饶晓东.  同域分布的红原鸡和中华鹧鸪栖息地适宜性评价及其重叠性分析 . 热带生物学报, 2025, 16(3): 476-487. doi: 10.15886/j.cnki.rdswxb.20240073
    [3] 陈虹, 段洪浪, 吴建平.  土壤理化性质和微生物群落组成对极端水分胁迫的响应 . 热带生物学报, 2025, 16(): 1-9. doi: 10.15886/j.cnki.rdswxb.20240119
    [4] 孙玉娟, 钟丽爽, 杨小波, 张翔.  短期降水减少对海南橡胶林土壤有机碳矿化及有机碳组分的影响 . 热带生物学报, 2024, 15(3): 272-280. doi: 10.15886/j.cnki.rdswxb.20230096
    [5] 王傲雪, 赵超.  槟榔碱对SD大鼠肠道微生物与神经递质的影响 . 热带生物学报, 2024, 15(5): 567-576. doi: 10.15886/j.cnki.rdswxb.20240040
    [6] 龚文坤, 伍巧慧, 王钢, 杨劲明, 吕荣婷, 王蓓蓓.  火龙果根际促生微生物筛选及其效应 . 热带生物学报, 2024, 15(5): 632-638. doi: 10.15886/j.cnki.rdswxb.20230138
    [7] 李冉, 李精华, 林生威, 解添杰, 范平珊, 王庆, 李婷玉, 王帅.  稻豆轮作对土壤理化性质及微生物群落的影响 . 热带生物学报, 2024, 15(2): 157-164. doi: 10.15886/j.cnki.rdswxb.20230036
    [8] 张善恒, 王文斌, 张永发, 罗雪华, 薛欣欣, 赵春梅, 任常琦, 王禹, 吴晓霜, 耿建梅.  海南岛主要农田耕层土壤磷的空间分布特征 . 热带生物学报, 2024, 15(5): 520-530. doi: 10.15886/j.cnki.rdswxb.20240046
    [9] 翁可欣, 张明亮, 李力.  微生物合成5-羟基色氨酸的研究进展 . 热带生物学报, 2023, 14(1): 42-49. doi: 10.15886/j.cnki.rdswxb.2023.01.016
    [10] 冀春花, 黄艳艳, 杨红竹, 赵家连, 茶正早.  不同施肥处理下橡胶苗对土壤养分吸收和分配的化学计量特征 . 热带生物学报, 2022, 13(5): 519-523. doi: 10.15886/j.cnki.rdswxb.2022.05.014
    [11] 袁新生, 赵炎, 唐瑞杰, 胡天怡, 朱启林, 汤水荣, 伍延正, 孟磊.  生物炭及与秸秆联用对我国热带地区稻田土壤CH4和N2O的影响 . 热带生物学报, 2022, 13(3): 300-308. doi: 10.15886/j.cnki.rdswxb.2022.03.014
    [12] 王文斌, 张永发, 王大鹏, 罗雪华, 吴小平, 薛欣欣, 赵春梅, 茶正早.  不同时期施入的氮肥在橡胶园土壤中的迁移分布 . 热带生物学报, 2022, 13(1): 42-47. doi: 10.15886/j.cnki.rdswxb.2022.01.007
    [13] 马振升, 吴志祥, 祁栋灵.  植物化感作用及其在橡胶复合生态系统的应用 . 热带生物学报, 2022, 13(1): 95-99. doi: 10.15886/j.cnki.rdswxb.2022.01.014
    [14] 李炳韵, 程云飞, 唐浩真, 张晓波, 阮云泽, 王蓓蓓, 赵艳, 吕烈武, 王朝弼.  配施生物有机肥与无机肥对连作菠萝土壤的影响 . 热带生物学报, 2021, 12(2): 192-201. doi: 10.15886/j.cnki.rdswxb.2021.02.008
    [15] 刘满意, 王禹童, 孙铭泽, 李荣, 王蓓蓓.  套作白三叶草对香蕉枯萎病发病率及土壤微生物群落的影响 . 热带生物学报, 2021, 12(2): 219-227. doi: 10.15886/j.cnki.rdswxb.2021.02.011
    [16] 孙鹏, 刘满意, 王蓓蓓.  香蕉秸秆不同还田模式对土壤微生物群落的影响 . 热带生物学报, 2021, 12(1): 57-62. doi: 10.15886/j.cnki.rdswxb.2021.01.008
    [17] 程云飞, 李炳韵, 胡英宏, 赵艳, 阮云泽, 张晓波, 王蓓蓓, 吕烈武.  不同连作年限对菠萝园土壤养分及可培养微生物数量的影响 . 热带生物学报, 2021, 12(2): 185-191. doi: 10.15886/j.cnki.rdswxb.2021.02.007
    [18] 马思远, 王海花, 林雨彬, 曾若菡, 刁晓平, 李鹏.  蚯蚓粪对槟榔根围土壤微生物多样性的影响 . 热带生物学报, 2021, 12(2): 202-209. doi: 10.15886/j.cnki.rdswxb.2021.02.009
    [19] 徐航, 刘贤青, 袁弘伦, 罗杰.  槟榔碱合成前体物质的空间分布及槟榔碱合成通路解析 . 热带生物学报, 2021, 12(3): 271-278. doi: 10.15886/j.cnki.rdswxb.2021.03.001
    [20] 戴边疆, 郭运勇, 宋希强, 刘治昆, 雷金睿, 梁怀月.  海口市古树名木资源特征及其空间分布 . 热带生物学报, 2020, 11(1): 63-71. doi: 10.15886/j.cnki.rdswxb.2020.01.010
  • 加载中
  • 计量
    • 文章访问数:  17
    • HTML全文浏览量:  2
    • PDF下载量:  0
    • 被引次数: 0
    出版历程
    • 收稿日期:  2024-07-20
    • 修回日期:  2024-09-09

    木棉稻田农林复合系统中丰富类和稀有类微生物的分布特征及影响因素

    doi: 10.15886/j.cnki.rdswxb.20240118
      基金项目:

      海南大学科研启动基金项目[KYQD (ZR)-21110

      海南省自然科学基金项目(322QN247)

      作者简介:

      丁一鸣(1997-)女,海南大学生态学院2021级硕士研究生。E-mail:362700610@qq.com

      通讯作者: 任明迅(1976-)男,教授,博士。研究方向:生物多样性与生态文化。E-mail:renmx@hainanu.edu.cn; 王文娟(1991-)女,讲师,博士。研究方向:群落生态学,土壤微生物生态学。E-mail:wangwj@hainanu.edu.cn
    • 中图分类号: S181

    摘要: 土壤微生物在农田生态系统功能方面发挥重要作用。然而,土壤微生物,特别是丰富类和稀有类微生物在农林复合系统中的分布规律还知之甚少。木棉稻田农林复合系统是长期保留在热带地区的一种传统农耕系统。本研究以海南省昌江县木棉稻田农林复合系统(Kapok-rice agroforestry system)为研究体系,分析与木棉树不同距离梯度上的稻田土壤中丰富类、稀有类细菌和真菌群落的分布特征及其与土壤因子的关系。结果表明:1)稀有类细菌的丰富度在靠近木棉的地方显著较高,而丰富类细菌和真菌的Shannon指数在靠近木棉的地方显著较低(P<0.05);2)稀有类和丰富类细菌和真菌的群落组成在与木棉树的不同距离梯度上均存在显著差异(ANOSIM:P=0.000 1);3)丰富类细菌α多样性与速效钾呈显著负相关,而稀有类细菌α多样性与总磷和有机质呈显著正相关;丰富类真菌α多样性与土壤因子无显著相关性,但稀有类真菌α多样性与土壤速效氮、速效磷和有机质呈显著正相关;土壤速效养分是丰富类细菌和真菌群落结构变异的关键驱动因子,而稀有类细菌和真菌群落结构变异的关键驱动因子不仅包括土壤速效养分,还包括有机质;总体而言,速效钾是影响丰富类和稀有类微生物空间分布的最重要因素。本研究揭示了木棉对稻田各土壤微生物类群分布特征及其主要驱动因子的影响,为木棉稻田农林复合系统在农业可持续发展中的应用提供理论支撑。

    English Abstract

    丁一鸣, 董晓杰, 马志泽, 黄光耀, 任明迅, 王文娟. 木棉稻田农林复合系统中丰富类和稀有类微生物的分布特征及影响因素[J]. 热带生物学报, 2025, 16(2): 270-280. doi: 10.15886/j.cnki.rdswxb.20240118
    引用本文: 丁一鸣, 董晓杰, 马志泽, 黄光耀, 任明迅, 王文娟. 木棉稻田农林复合系统中丰富类和稀有类微生物的分布特征及影响因素[J]. 热带生物学报, 2025, 16(2): 270-280. doi: 10.15886/j.cnki.rdswxb.20240118
    DING Yiming, DONG Xiaojie, MA Zhize, HUANG Guangyao, REN Mingxun, WANG Wenjuan. Distribution characteristics and influencing factors of abundant and rare microbial communities in Kapok-rice agroforestry systems[J]. Journal of Tropical Biology, 2025, 16(2): 270-280. doi: 10.15886/j.cnki.rdswxb.20240118
    Citation: DING Yiming, DONG Xiaojie, MA Zhize, HUANG Guangyao, REN Mingxun, WANG Wenjuan. Distribution characteristics and influencing factors of abundant and rare microbial communities in Kapok-rice agroforestry systems[J]. Journal of Tropical Biology, 2025, 16(2): 270-280. doi: 10.15886/j.cnki.rdswxb.20240118
    参考文献 (44)

    目录

      /

      返回文章
      返回