-
主持人:徐 冉
鱼藤(Derris trifoliata)为豆科(Fabaceae)鱼藤属(Derris)植物,为多年生攀援藤本,原产亚洲热带及亚热带地区。在我国主要分布于福建、台湾、广东、广西和海南等地,多生于沿海河岸灌木丛、海边灌木丛或近海岸的红树林中[1-2]。近年来,我国局部地区鱼藤种群增长过快,其攀援至红树林植物的树冠上层,导致大量红树林植物不能正常进行光合作用而枯萎死亡,严重影响了红树林群落的发育,甚至导致红树林生态系统逐渐退化,已成为危害红树林植物的“植物杀手”[3-4]。因此,开展鱼藤的相关研究对于红树林湿地的保护和恢复具有重要的现实意义。目前,鱼藤的研究多集中在鱼藤对红树林危害的评估等方面[3-5],对鱼藤的分布[6-7]、种群特征和个体的生长发育等特性的研究较少[8-9]。有研究表明,不同环境中生长的植物,其形态特征、生物量、光合生理以及抗氧化酶水平等均会发生一定程度的改变,可以直观地反映环境因子对植物生长的影响[10-12]。因此,笔者通过人工控制实验,模拟潮汐环境,研究鱼藤幼苗在不同的水盐环境中的生理生化过程的变化,了解鱼藤的生长和发育特征,探讨鱼藤爆发的原因,旨在为红树林湿地的保护和生态修复过程中鱼藤的防治提供理论和技术支持。
Physiological responses of antioxidant enzymes in the leaves of Derris trifoliata seedlings under varying tidal conditions
-
摘要: 为了探讨鱼藤(Derris trifoliata)幼苗在不同的水盐环境中的生理生化过程的变化,通过人工控制实验模拟25种潮汐环境,培育鱼藤幼苗,观测其在不同潮汐环境中,叶片内抗氧化酶活性、渗透调节物和膜系统损伤程度。结果表明:在盐度和淹水单一因素影响下,在盐度0~40范围内,鱼藤幼苗叶片内的SOD和CAT活性均呈现先升后降的变化趋势,在盐度20环境中出现峰值;在淹水时间0~8 h·d-1范围内,鱼藤幼苗叶片内的SOD和CAT活性均变化不显著。鱼藤幼苗叶片内游离脯氨酸FPRO和丙二醛(MDA)的含量,随着盐度和淹水时间的增加呈现增长的变化趋势,分别在盐度40和淹水8 h·d-1的处理中达到最大。在本研究设定的盐度和淹水时间共同作用下,鱼藤幼苗叶片内的SOD活性、CAT活性、FPRO和MDA含量分别在:盐度20+淹水6 h·d-1、盐度20+淹水8 h·d-1、盐度40+淹水8 h·d-1的环境中出现峰值。综上所述,鱼藤幼苗在淹水时间短、盐度低的环境中,其抗氧化酶抵御胁迫损伤的能力较强,生长较正常,因此,对该环境中的红树林植被影响相对较大,而在淹水时间长、盐度高的环境中,抗氧化酶抵御胁迫损伤的能力较弱,生长受到抑制,因此对该条件下的红树林植被影响相对减小。Abstract: In recent years the rapid proliferation of Derris trifoliata populations in mangrove areas has resulted in extensive mortality of mangrove plants in certain regions, posing a serious threat to the mangrove wetland ecosystem. During field investigations it was observed that the impact of D. trifoliata on mangrove plants was more pronounced in areas with shorter flooding durations and lower salinity levels compared to those with longer flooding durations and higher salinity levels. To investigate the underlying causes of this phenomenon, an attempt was made to simulate 25 different tidal environments through controlled artificial experiments, under which D. trifoliata seedlings were raised to observe variations in antioxidant enzyme activity, osmotic regulation mechanisms, and membrane system damage levels in their leaves. The results demonstrated that under the individual influence of salinity and flood, the activities of superoxide dismutase (SOD) and catalase (CAT) in the leaves of D. trifoliata seedlings initially increased and then decreased at a salinity level of 0—40‰. The peak value was observed at a salinity level of 20‰. In D. trifoliata seedlings SOD and CAT activities in the leaves did not show significant changes during the 0 h/d-8 h/d flooding period. However, free proline (FPRO) and malondialdehyde (MDA) contents in the seedling leaves exhibited an increasing trend with salinity levels and flooding duration, and their maximum values were reached under treatment conditions of 40‰ salinity and 8 h/d flooding. When both salinity levels and flooding duration were put together, the SOD activity, CAT activity, FPRO content, and MDA content in the seedling leaves came to peak under the treatment of 20‰ salt for 6 h/d, 20‰ salt for 8 h/d, and 40‰ salt for 8 h/d, respectively. In summary, in an environment with short flooding durations and low salinity levels, D. trifoliata seedlings exhibited a heightened capacity for antioxidant enzymes to combat stress-induced damage, resulting in normal growth and consequently a relatively significant impact on mangrove plants. Conversely, in an environment with prolonged flooding duration and high salinity levels, the efficacy of antioxidant enzymes in mitigating stress damage was diminished, leading to inhibited growth and consequently a relatively less influence on the mangrove plants.
-
Key words:
- mangrove /
- Derris trifoliata /
- physiological stress /
- physiological adaptation
注释:1) 潘学峰 -
-
[1] 杨小波, 陈宗铸, 李东海. 海南植被志[M]. 北京: 科学出版社, 2019. [2] 杨小波. 海南植物图志[M]. 北京: 科学出版社, 2014. [3] 黄歆怡, 钟诚, 陈树誉, 刘演, 梁士楚. 鱼藤对红树林植物的危害及管理 [J]. 湿地科学与管理, 2015, 11(2): 26-29. [4] 刘秋红. 广州市红树林资源现状及其保护利用对策[J]. 福建林业科技, 2005, 32(2): 125-128. [5] 黄丹慜, 孙秀东, 郭霞, 苟志辉. 海南红树林伴生植物三叶鱼藤的风险分析[J]. 热带林业, 2019, 47(3): 62-65. [6] 张韫, 廖宝文, 杨丽芳, 等. 红树林中乡土伴生藤本植物鱼藤研究概述[J]. 湿地科学, 2022, 20(3): 421-426. [7] 生农, 辛琨, 张春霞, 等. 鱼藤在红树林中的扩散规律初探[J]. 海南师范大学学报(自然科学版), 2021, 34(2): 148-153. [8] 童康. 红树林伴生植物鱼藤(Derris trifoliate)对潮汐淹水胁迫的响应[D]. 厦门: 厦门大学出版社, 2011. [9] 袁霞, 张宜辉, 黄冠闽, 等. 不同盐度对鱼藤幼苗生长及光合作用的影响[J]. 生态科学, 2010, 29(2): 102-108. [10] 谷俊, 耿贵, 李冬雪, 等. 盐胁迫对植物各营养器官形态结构影响的研究进展[J]. 中国农学通报, 2017, 33(24): 62-67. [11] 杨娇, 厉恩华, 蔡晓斌, 等. 湿地植物对水位变化的响应研究进展[J]. 湿地科学, 2014(6): 807-813. [12] 张爽, 郭成久, 苏芳莉, 等. 不同盐度水灌溉对芦苇生长的影响[J]. 沈阳农业大学学报. 2008, 39(1): 65-68. [13] 蔡庆生. 植物生理学实验[M]. 北京: 中国农业大学出版社, 2013. [14] BOWLER C, MONTAGU M V, INZE D. Superoxide dismutase and stress tolerance [J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1992, 43: 83-116. [15] 杜社妮, 白岗栓, 梁银丽. 土壤水分和光照对西葫芦生长和生理特性的影响[J]. 应用生态学报, 2011, 22(4): 1101-1106. [16] 贺安娜, 林文强, 姚奕. 遮荫对虎耳草光合生理特性的影响[J]. 植物研究, 2012, 32(6): 657-661. [17] SALIN, MARVIN L. Chloroplast and mitochondrial mechanisms for protection against oxygen toxicity [J]. Free Radical Research Communications, 1991, 13(1): 851-858. [18] 王宝山. 生物自由基与植物膜伤害 [J]. 植物生理学通讯, 1988(2): 12-16. [19] HODGSON R A J, ORR G R, RAISON J K. Inhibition of photosynthesis by chilling in the light [J]. Plant Sci, 1987, 49(2): 75-79. [20] KRIWOKEN L K, HEDGE P. Exotic species and estuaries: managing Spartina anglica in Tasmania, Australia [J]. Ocean & Coastal Management, 2000, 43(7): 573-584. [21] 石福臣, 鲍芳. 盐和温度胁迫对外来中互花米草(Spartina alterniflora)生理生态特性的影响[J]. 生态学报, 2007, 27(7): 2733-2741. [22] 廖宝文. 三种红树植物对潮水淹浸与水体盐度适应能力的研究[D]. 北京: 中国林业科学研究院, 2010:61-80. [23] 吕晓波, 钟才荣, 张孟文, 等. 红海榄幼苗生长对海平面上升的适应性研究[J]. 热带林业, 2023, 51(1): 59-66. [24] YE Y, TAM N F Y, WONG Y S, LU C Y. Growth and physiological responses of two mangrove species (Bruguiera gymnorrhiza and Kandelia candel) to waterlogging [J]. Environmental and Experimental Botany, 2003, 49(3): 209-221. [25] CHEN L Z, WANG W Q, LIN P. Photosynthetic and physiological responses of Kandelia candel L. Druce seedlings to duration of tidal immersion in artificial seawater [J]. Environmental and Experimental Botany, 2005, 54(3): 256-266. [26] JIA H X, ZHAO M R, MA Y. The study on cell lipid overoxidation injuries and changes of plasmalemma ultrastructure intypical saline plants[J]. Acta Botanica Boreali-occidentalia Sinica, 1994, 14(6): 1-5. [27] 张海燕. 盐分和水分胁迫对盐地碱蓬幼苗渗透调节效应的研究[J]. 植物学报, 1998, 40(1): 56-61. [28] 谭芳林, 游惠明, 黄丽, 等. 秋茄幼苗对盐度-淹水双胁迫的生理适应[J]. 热带作物学报,2014, 35(11): 2179-2184. [29] 廖宝文, 邱凤英, 谭凤仪, 等. 红树植物秋茄幼苗对模拟潮汐淹浸时间的适应性研究[J]. 华南农业大学学报, 2009, 30(3): 49-54.