留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

亚热带海域污损真核微生物群落对水动力变化的响应研究

李建聪 陈新 陈英洁 刘胤仪 唐敏

李建聪, 陈新, 陈英洁, 刘胤仪, 唐敏. 亚热带海域污损真核微生物群落对水动力变化的响应研究[J]. 热带生物学报, 2025, 16(1): 115-124. doi: 10.15886/j.cnki.rdswxb.20240026
引用本文: 李建聪, 陈新, 陈英洁, 刘胤仪, 唐敏. 亚热带海域污损真核微生物群落对水动力变化的响应研究[J]. 热带生物学报, 2025, 16(1): 115-124. doi: 10.15886/j.cnki.rdswxb.20240026
LI Jiancong, CHEN Xin, CHEN Yingjie, LIU Yinyi, TANG Min. Response of marine eukaryotic microfouling communities to hydrodynamic variation in subtropical Sea[J]. Journal of Tropical Biology, 2025, 16(1): 115-124. doi: 10.15886/j.cnki.rdswxb.20240026
Citation: LI Jiancong, CHEN Xin, CHEN Yingjie, LIU Yinyi, TANG Min. Response of marine eukaryotic microfouling communities to hydrodynamic variation in subtropical Sea[J]. Journal of Tropical Biology, 2025, 16(1): 115-124. doi: 10.15886/j.cnki.rdswxb.20240026

亚热带海域污损真核微生物群落对水动力变化的响应研究

doi: 10.15886/j.cnki.rdswxb.20240026
基金项目: 

国家自然科学基金项目(32160270,31660128)

海南省自然科学基金高层次人才项目(2019RC039)

详细信息
    第一作者:

    李建聪(1998-),女,海南大学生态与环境学院2021级硕士研究生。E-mail:2941044975@qq.com

    通信作者:

    唐敏(1972-),女,教授。研究方向:水生生态,生态毒理。E-mail:tangmin@hainanu.edu.cn

  • 中图分类号: X172

Response of marine eukaryotic microfouling communities to hydrodynamic variation in subtropical Sea

  • 摘要: 为揭示水动力变化对海洋污损真核微生物群落的影响,通过室外微宇宙实验,采用环境微生物高通量测序技术,研究了不同水动力条件下真核微生物群落组成结构和功能特征。实验检测到真核微生物146个属,隶属18个门。聚类分析表明动静态样品组微生物群落结构明显不同。在水动力条件下,不同材料表面的真核微生物群落中优势门属呈现差异,静态组中线虫动物门为优势门,小单宫属丰度最高;动态组中,对于玻璃钢、铝合金材料,弱动力组表面微生物群落优势菌门为绿藻门,转移组为线虫动物门。强动力组3种材料表面的优势菌门均为定鞭藻门,但强动力组的群落丰富度和多样性较低。此外,水动力影响群落的代谢通路并改变了真核微生物群落物种间的关联性。
  • [1] SONG S, DEMIREL Y K, ATLAR M. An investigation into the effect of biofouling on the ship hydrodynamic characteristics using CFD[J]. Ocean Engineering, 2019, 175:122-137.
    [2] HUNSUCKER K Z, GARDNER H, LIEBERMAN K, et al.Using hydrodynamic testing to assess the performance of fouling control coatings[J]. Ocean Engineering, 2019,194:106677.
    [3] SARKAR P K, PAWAR S S, RATH S K, et al. Antibarnacle biofouling coatings for the protection of marine vessels:synthesis and progress[J]. Environmental Science and Pollution Research, 2022, 29(18):26078-26112.
    [4] DAVIDSON I C, MCCANN L D, FOFONOFF P W, et al.The potential for hull-mediated species transfers by obsolete ships on their final voyages[J]. Diversity and Distributions, 2008, 14(3):518-529.
    [5] GIPPERTH L. The legal design of the international and European Union ban on tributyltin antifouling paint:direct and indirect effects[J]. Journal of Environmental Management, 2009, 90(Suppl 1):S86-S95.
    [6] ROSENHAHN A, SCHILP S, KREUZER H J, et al. The role of"inert"surface chemistry in marine biofouling prevention[J]. Physical Chemistry Chemical Physics, 2010,12(17):4275-4286.
    [7] LI L, LIU W, LIANG T, et al. The adsorption mechanisms of algae-bacteria symbiotic system and its fast formation process[J]. Bioresource Technology, 2020, 315:123854.
    [8] QIAN P Y, LAU S C K, DAHMS H U, et al. Marine biofilms as mediators of colonization by marine macroorganisms:implications for antifouling and aquaculture[J]. Marine Biotechnology, 2007, 9(4):399-410.
    [9] BÖLLMANN J, MARTIENSSEN M. Impact of pH conditions and the characteristics of two electrodialysis membranes on biofilm development under semi-realistic conditions[J]. Biofouling, 2021, 37(9/10):998-1005.
    [10] COUTTS A D M, PIOLA R F, HEWITT C L, et al. Effect of vessel voyage speed on survival of biofouling organisms:implications for translocation of non-indigenous marine species[J]. Biofouling, 2010, 26(1):1-13.
    [11] HUNSUCKER K Z, HUNSUCKER J T, GARDNER H, et al. Static and dynamic comparisons for the evaluation of ship hull coatings[J]. Marine Technology Society Journal, 2017, 51(2):71-75.
    [12] PORTAS A, CARRIOT N, ORTALO-MAGNÉA, et al.Impact of hydrodynamics on community structure and metabolic production of marine biofouling formed in a highly energetic estuary[J]. Marine Environmental Research, 2023, 192:106241.
    [13] OSORIO V, PROIA L, RICART M, et al. Hydrological variation modulates pharmaceutical levels and biofilm responses in a Mediterranean River[J]. The Science of the Total Environment, 2014, 472:1052-1061.
    [14] ROCHEX A, GODON J J, BERNET N, et al. Role of shear stress on composition, diversity and dynamics of biofilm bacterial communities[J]. Water Research, 2008,42(20):4915-4922.
    [15] MURPHY E A K, BARROS J M, SCHULTZ M P, et al.Boundary layer hydrodynamics of patchy biofilms[J]. Biofouling, 2022, 38(7):696-714.
    [16] TAHERZADEH D, PICIOREANU C, HORN H. Mass transfer enhancement in moving biofilm structures[J]. Biophysical Journal, 2012, 102(7):1483-1492.
    [17] 陈明华,谢良国,付志强,等.丙酮法和热乙醇法测定浮游植物叶绿素a的方法比对[J]. 环境监测管理与技术, 2016, 28(2):46-48.
    [18] PERRIN A, HERBELIN P, JORAND F P A, et al.Design of a rotating disk reactor to assess the colonization of biofilms by free-living amoebae under high shear rates[J]. Biofouling, 2018, 34(4):368-377.
    [19] OWEN J M. Flow and heat transfer in rotating-disc systems[C] //Proceedings of the 1992 International Symposium on Heat Transfer in Turbomachinery.. Marathon,Greece. Connecticut:Begell House, 1994.
    [20] SCHLICHTING H, GERSTEN K. Fundamentals of boundary-layer theory[M] //Boundary-Layer Theory. Berlin, Heidelberg:Springer Berlin Heidelberg, 2016:29-49.
    [21] MATYUGINA E, BELKOVA N, BORZENKO S, et al.Structure and diversity dynamics of microbial communities at day and night:investigation of meromictic Lake Doroninskoe, Transbaikalia, Russia[J]. Journal of Oceanology and Limnology, 2018, 36(6):1978-1992.
    [22] RUNGRASSAMEE W, KLANCHUI A, MAIBUNKAEW S, et al. Bacterial dynamics in intestines of the black tiger shrimp and the Pacific white shrimp during Vibrio harveyi exposure[J]. Journal of Invertebrate Pathology,2016, 133:12-19.
    [23] 范立民.吉富罗非鱼养殖池塘微生物群落研究[D]. 南京:南京农业大学, 2015.
    [24] HUNSUCKER J T, HUNSUCKER K Z, GARDNER H, et al. Influence of hydrodynamic stress on the frictional drag of biofouling communities[J]. Biofouling, 2016,32(10):1209-1221.
    [25] HUNSUCKER K Z, KOKA A, LUND G, et al. Diatom community structure on in-service cruise ship hulls[J]. Biofouling, 2014, 30(9):1133-1140.
    [26] STOODLEY P, SAUER K, DAVIES D G, et al. Biofilms as complex differentiated communities[J]. Annual Review of Microbiology, 2002, 56:187-209.
    [27] PAN M, LI H, HAN X, et al. Effects of hydrodynamic conditions on the composition, spatiotemporal distribution of different extracellular polymeric substances and the architecture of biofilms[J]. Chemosphere, 2022, 307(Pt 4):135965.
    [28] THAMES H T, POKHREL D, WILLIS E, et al. Salmonella biofilm formation under fluidic shear stress on different surface materials[J]. Foods, 2023, 12(9):1918.
    [29] ZARGIEL K A, SWAIN G W. Static vs dynamic settlement and adhesion of diatoms to ship hull coatings[J]. Biofouling, 2014, 30(1):115-129.
    [30] MIN W G, RHO H S, KIM Y I, et al. Bathymetric trends of the deep-sea meiobenthos distributed on the continental shelf, slope, and deep floor of the Ulleung Basin, East Sea[J]. Deep Sea Research Part I:Oceanographic Research Papers, 2023, 200:104136.
    [31] BARRANGUET C, VEUGER B, VAN BEUSEKOM S A M, et al. Divergent composition of algal-bacterial biofilms developing under various external factors[J]. European Journal of Phycology, 2005, 40(1):1-8.
    [32] WOODCOCK S, BESEMER K, BATTIN T J, et al. Modelling the effects of dispersal mechanisms and hydrodynamic regimes upon the structure of microbial communities within fluvial biofilms[J]. Environmental Microbiology, 2013, 15(4):1216-1225.
    [33] OLLOS P J, HUCK P M, SLAWSON R M. Factors Affecting biofilm accumulation in Model Distribution Systems[J]. Journal-American Water Works Association, 2003, 95(1):87-97.
    [34] QIAN P Y, CHENG A, WANG R, et al. Marine biofilms:diversity, interactions and biofouling[J]. Nature Reviews Microbiology, 2022, 20:671-684.
    [35] LEIBOLD M A, HOLYOAK M, MOUQUET N, et al. The metacommunity concept:a framework for multi-scale community ecology[J]. Ecology Letters, 2004, 7(7):601-613.
    [36] BÖLLMANN J, MARTIENSSEN M. Impact of pH conditions and the characteristics of two electrodialysis membranes on biofilm development under semi-realistic conditions[J]. Biofouling, 2021, 37(9/10):998-1005.
    [37] HAGER W H, BOES R M. Hydraulic structures:a positive outlook into the future[J]. Journal of Hydraulic Research, 2014, 52(3):299-310.
    [38] MA B, WANG Y, YE S, et al. Earth microbial cooccurrence network reveals interconnection pattern across microbiomes[J]. Microbiome, 2020, 8(1):82.
    [39] LOUCA S, POLZ M F, MAZEL F, et al. Function and functional redundancy in microbial systems[J]. Nature Ecology&Evolution, 2018, 2:936-943.
    [40] SINGER G, BESEMER K, SCHMITT-KOPPLIN P, et al.Physical heterogeneity increases biofilm resource use and its molecular diversity in stream mesocosms[J]. PLoS One, 2010, 5(4):e9988.
    [41] DOUTERELO I, SHARPE R L, BOXALL J B. Influence of hydraulic regimes on bacterial community structure and composition in an experimental drinking water distribution system[J]. Water Research, 2013, 47(2):503-516.
    [42] MAC KENZIE W R, HOXIE N J, PROCTOR M E, et al.A massive outbreak in Milwaukee of cryptosporidium infection transmitted through the public water supply[J]. The New England Journal of Medicine, 1994, 331(3):161-167.
    [43] 艾海男,张青,何强,等.重力流排水管道内流态对生物膜菌落结构的影响[J]. 环境工程学报, 2017, 11(5):2845-2850.
  • [1] 张智宇, 谢珍玉, 黄爱优, 张报轩.  3种沉水植物对模拟养殖尾水的净化效果 . 热带生物学报, 2025, 16(1): 134-151. doi: 10.15886/j.cnki.rdswxb.20240042
    [2] 王远航, 黄亮华, 孙春阳, 贾程豪, 田超, 高菲, 徐勤增, 许强, 王爱民.  三亚蜈支洲岛海洋牧场浮游生物群落结构时空变动 . 热带生物学报, 2025, 16(2): 312-326. doi: 10.15886/j.cnki.rdswxb.20240028
    [3] 陈虹, 段洪浪, 吴建平.  土壤理化性质和微生物群落组成对极端水分胁迫的响应 . 热带生物学报, 2025, 16(): 1-9. doi: 10.15886/j.cnki.rdswxb.20240119
    [4] 韦海, 李昌涛, 莫奇锦, 李文, 管为, 罗昌明, 罗敦, 钟铭隆.  焦枯病对桉树林下土壤真菌多样性的影响 . 热带生物学报, 2025, 16(2): 227-235. doi: 10.15886/j.cnki.rdswxb.20240102
    [5] 林冲, 田光辉, 刘少军, 辛红雨, 赵婷, 甘业星.  南海POC沉积通量时空变化的遥感分析 . 热带生物学报, 2024, 15(5): 599-607. doi: 10.15886/j.cnki.rdswxb.20240003
    [6] 王傲雪, 赵超.  槟榔碱对SD大鼠肠道微生物与神经递质的影响 . 热带生物学报, 2024, 15(5): 567-576. doi: 10.15886/j.cnki.rdswxb.20240040
    [7] 龚文坤, 伍巧慧, 王钢, 杨劲明, 吕荣婷, 王蓓蓓.  火龙果根际促生微生物筛选及其效应 . 热带生物学报, 2024, 15(5): 632-638. doi: 10.15886/j.cnki.rdswxb.20230138
    [8] 李冉, 李精华, 林生威, 解添杰, 范平珊, 王庆, 李婷玉, 王帅.  稻豆轮作对土壤理化性质及微生物群落的影响 . 热带生物学报, 2024, 15(2): 157-164. doi: 10.15886/j.cnki.rdswxb.20230036
    [9] 翁可欣, 张明亮, 李力.  微生物合成5-羟基色氨酸的研究进展 . 热带生物学报, 2023, 14(1): 42-49. doi: 10.15886/j.cnki.rdswxb.2023.01.016
    [10] 夏光远, 陈石泉, 谢海群, 沈铭辉.  西沙群岛珊瑚礁区大型底栖生物群落特征 . 热带生物学报, 2023, 14(1): 8-16. doi: 10.15886/j.cnki.rdswxb.2023.01.003
    [11] 陈钦镇, 李飞航, 武浩恒, 林向民, 王树启, 陈家林, 刘柱.  耐硼赖氨酸芽孢杆菌的保护剂筛选及其对罗非鱼肠道微生物群落的影响 . 热带生物学报, 2023, 14(2): 214-220. doi: 10.15886/j.cnki.rdswxb.2023.02.011
    [12] 代霖欣, 周小磊, 杨术, 侯丹清, 孙成波.  高位处理水精养虾池水体浮游生物的时空变化 . 热带生物学报, 2022, 13(5): 429-439. doi: 10.15886/j.cnki.rdswxb.2022.05.002
    [13] 全飞, 兰国玉, 魏亚情, 李明美, 孙树晴, 杜昊楠.  基于宏基因组测序的橡胶林病原微生物的分析 . 热带生物学报, 2022, 13(1): 27-35. doi: 10.15886/j.cnki.rdswxb.2022.01.005
    [14] 陈燕艳, 徐诗涛, 王德立, 王军, 周元元, 侯祥文.  不同种植地胆木根际的细菌群落结构和多样性 . 热带生物学报, 2022, 13(5): 488-495. doi: 10.15886/j.cnki.rdswxb.2022.05.009
    [15] 程云飞, 李炳韵, 胡英宏, 赵艳, 阮云泽, 张晓波, 王蓓蓓, 吕烈武.  不同连作年限对菠萝园土壤养分及可培养微生物数量的影响 . 热带生物学报, 2021, 12(2): 185-191. doi: 10.15886/j.cnki.rdswxb.2021.02.007
    [16] 陈雷艳, 刘培江, 王浩华.  枯草芽孢杆菌中色噪声诱导的ComK基因表达动力学 . 热带生物学报, 2021, 12(3): 340-346. doi: 10.15886/j.cnki.rdswxb.2021.03.010
    [17] 马思远, 王海花, 林雨彬, 曾若菡, 刁晓平, 李鹏.  蚯蚓粪对槟榔根围土壤微生物多样性的影响 . 热带生物学报, 2021, 12(2): 202-209. doi: 10.15886/j.cnki.rdswxb.2021.02.009
    [18] 黄七梅, 肖鹰, 赵振东, 李嘉诚, 冯玉红.  微动力曝气SBR工艺脱氮除碳及降解SDBS动力学研究 . 热带生物学报, 2021, 12(2): 244-252. doi: 10.15886/j.cnki.rdswxb.2021.02.014
    [19] 孙鹏, 刘满意, 王蓓蓓.  香蕉秸秆不同还田模式对土壤微生物群落的影响 . 热带生物学报, 2021, 12(1): 57-62. doi: 10.15886/j.cnki.rdswxb.2021.01.008
    [20] 刘满意, 王禹童, 孙铭泽, 李荣, 王蓓蓓.  套作白三叶草对香蕉枯萎病发病率及土壤微生物群落的影响 . 热带生物学报, 2021, 12(2): 219-227. doi: 10.15886/j.cnki.rdswxb.2021.02.011
  • 加载中
  • 计量
    • 文章访问数:  12
    • HTML全文浏览量:  0
    • PDF下载量:  0
    • 被引次数: 0
    出版历程
    • 收稿日期:  2024-02-09
    • 修回日期:  2024-03-14
    • 刊出日期:  2025-03-15

    亚热带海域污损真核微生物群落对水动力变化的响应研究

    doi: 10.15886/j.cnki.rdswxb.20240026
      基金项目:

      国家自然科学基金项目(32160270,31660128)

      海南省自然科学基金高层次人才项目(2019RC039)

      作者简介:

      李建聪(1998-),女,海南大学生态与环境学院2021级硕士研究生。E-mail:2941044975@qq.com

      通讯作者: 唐敏(1972-),女,教授。研究方向:水生生态,生态毒理。E-mail:tangmin@hainanu.edu.cn
    • 中图分类号: X172

    摘要: 为揭示水动力变化对海洋污损真核微生物群落的影响,通过室外微宇宙实验,采用环境微生物高通量测序技术,研究了不同水动力条件下真核微生物群落组成结构和功能特征。实验检测到真核微生物146个属,隶属18个门。聚类分析表明动静态样品组微生物群落结构明显不同。在水动力条件下,不同材料表面的真核微生物群落中优势门属呈现差异,静态组中线虫动物门为优势门,小单宫属丰度最高;动态组中,对于玻璃钢、铝合金材料,弱动力组表面微生物群落优势菌门为绿藻门,转移组为线虫动物门。强动力组3种材料表面的优势菌门均为定鞭藻门,但强动力组的群落丰富度和多样性较低。此外,水动力影响群落的代谢通路并改变了真核微生物群落物种间的关联性。

    English Abstract

    李建聪, 陈新, 陈英洁, 刘胤仪, 唐敏. 亚热带海域污损真核微生物群落对水动力变化的响应研究[J]. 热带生物学报, 2025, 16(1): 115-124. doi: 10.15886/j.cnki.rdswxb.20240026
    引用本文: 李建聪, 陈新, 陈英洁, 刘胤仪, 唐敏. 亚热带海域污损真核微生物群落对水动力变化的响应研究[J]. 热带生物学报, 2025, 16(1): 115-124. doi: 10.15886/j.cnki.rdswxb.20240026
    LI Jiancong, CHEN Xin, CHEN Yingjie, LIU Yinyi, TANG Min. Response of marine eukaryotic microfouling communities to hydrodynamic variation in subtropical Sea[J]. Journal of Tropical Biology, 2025, 16(1): 115-124. doi: 10.15886/j.cnki.rdswxb.20240026
    Citation: LI Jiancong, CHEN Xin, CHEN Yingjie, LIU Yinyi, TANG Min. Response of marine eukaryotic microfouling communities to hydrodynamic variation in subtropical Sea[J]. Journal of Tropical Biology, 2025, 16(1): 115-124. doi: 10.15886/j.cnki.rdswxb.20240026
    参考文献 (43)

    目录

      /

      返回文章
      返回