-
普通大蓟马(Megalurothrips usitatus)是豆类植物上的一种重要害虫[1-3],尤其对豇豆属植物有强烈偏好性[4]。该虫的发生与危害严重影响豆类作物的产量和品质[5-6]。在我国海南岛,普通大蓟马对多种常用杀虫剂产生了抗药性,成为最难对付的豇豆(Vigna unguiculata)害虫[5, 7]。普通大蓟马是典型的单倍−二倍体生物(Haplodiploidy),其繁殖方式包括两性生殖和产雄孤雌生殖[1, 8]。性比是昆虫种群结构特征之一[9],可用来预测蓟马种群增长趋势、确定防治时间[10]。性比和繁殖力是影响蓟马种群动态的最敏感因子[11]。蓟马的性比受多种非生物因子和生物因子的影响,例如,温度、食物、蓟马的生物学和生态学特性和防控因子等[8, 12-15]。寄主植物质量的变化不仅能改变植食性昆虫的繁殖力,还能影响某些昆虫的性别分配,导致性比偏雌或偏雄[16]。氮(N)是影响昆虫寄主植物营养质量的关键因子之一[17]。然而,迄今为止,有关N对普通大蓟马繁殖的影响国内外尚无报道。因此,本研究拟研究不同施氮水平对豇豆普通大蓟马繁殖及其子代性比的影响,以期为普通大蓟马的绿色防控提供技术支撑。
-
亲代雌虫的存活天数和产卵期均以高N处理最长,分别长达24.48 d和23.13 d,且显著大于另2个处理(P<0.05);低N和中N处理的存活天数相似,其值为19 d左右;低N和中N处理的产卵期差异不大,大约为17 d。对产卵前期而言,高N处理仅有0.15 d,显著小于低N处理(0.92 d)和中N处理(0.91 d)(P<0.05)。低N、中N和高N处理的产卵量分别为46.51、63.30和100.13粒·雌−1,其中,高N处理与低N和中N处理之间的差异都达到了显著水平(P<0.05)。同样地,高N处理的日产卵量[4.38粒·(雌·d)−1]也显著大于低N处理[2.82粒·(雌·d)−1]和中N处理[3.36粒·(雌·d)−1](P<0.05)(表1)。说明已交配普通大蓟马雌虫的存活天数、产卵前期、产卵期、产卵量和日产卵量均受施N处理的影响,但产卵后期不随施N水平而变化。
表 1 豇豆3种施N水平下普通大蓟马亲代雌虫的发育与产卵量
参数 低N 中N 高N 存活天数/d 18.86±0.67b 19.70±0.95b 24.48±1.29a 产卵前期/d 0.92±0.21a 0.91±0.21a 0.15±0.10b 产卵期/d 16.20±0.79b 17.16±1.10b 23.13±1.26a 产卵后期/d 1.75±0.26a 1.64±0.27a 1.20±0.19a 产卵量/(粒·雌−1) 46.51±4.38b 63.30±8.25b 100.13±5.99a 日产卵量/[粒·(雌·d)−1] 2.82±0.19b 3.36±0.29b 4.38±0.15a 注:表中数值为平均数±标准差,同一行数据后标有不同字母表示在P<0.05上差异显著。 -
豇豆3种施N水平下,普通大蓟马亲代雌虫在存活期内所产子代的性比见图1。从图1可知,子代性比随豇豆施N水平的增加而下降,从偏雄性逐步转向偏雌性;低N、中N和高N处理的子代性比分别为0.70、0.59和0.45,彼此之间的差异都达到了显著水平(P<0.05)。
不同施N条件下普通大蓟马所产子代的日性比展现出了波动性(图2)。但是,在雌虫产卵的前25 d内,子代日性比的波动相对较小;低N处理的日性比全部偏雄,其值介于0.60~0.83;同样,中N处理的日性比基本偏雄,仅有2 d的性比小于0.5;对高N处理而言,日性比多数偏雌,其值在0.31~0.57之间变化,日性比等于或大于0.5的情形仅出现了3次。
-
豇豆施N水平对普通大蓟马所产子代的雄虫数没有显著影响,3个处理的子代雄虫数介于30.22~41.45头·雌−1(图3)。子代雌虫数量则随施N水平的提高而增加,低N、中N和高N处理的子代雌虫数分别为15.51、26.02和57.93头·雌−1,彼此之间差异显著(P<0.05)。子代成虫数以高N处理最多,其值高达99.38头·雌−1,同另2个处理的差异均达到了显著水平(P<0.05),但低N处理(45.73头·雌−1)和中N处理(62.32头·雌−1)之间没有显著差异。
-
豇豆3种施N条件下,普通大蓟马所产子代的存活率介于98.68%~99.24%之间(图4),彼此间差异不显著。
Effects of nitrogen fertilization on reproduction and offspring sex ratio in Megalurothrips usitatus (Bagrall) (Thysanoptera: Thripidae)
-
摘要: 为了评价施氮(N)水平对普通大蓟马(Megalurothrips usitatus)繁殖及其性比的影响,采用盆栽法种植豇豆(Vigna unguiculata),分别按低N(0 kg·hm−2)、中N(160 kg·hm−2)和高N(320 kg·hm−2)水平于苗前土施尿素,用叶盘法在室内单头饲喂已交配的1日龄雌虫,以嫩豇豆荚饲养其子代,观察亲代雌虫的繁殖与存活状况、子代的数量与性别。结果显示:与低N和中N处理相比,高N显著延长亲代雌虫的存活天数和产卵期,缩短产卵前期,提高产卵量和日产卵量。低N、中N和高N处理的子代雄性比分别为0.70、0.59和0.45,彼此之间差异显著。子代雌虫数量随施N水平的提高而增加,高N处理的子代成虫数显著大于低N和中N。施N对子代存活率没有影响。以上结果表明,施N水平能影响普通大蓟马的生长繁殖和性比,偏施N肥有利于普通大蓟马的繁殖,促使子代性比偏雌。Abstract: In order to evaluate the influences of nitrogen fertilization on reproduction and sex ratio of Megalurothrips usitatus (Bagrall), an economically important pest of legumes, the 1-day-old mated females were provided daily with leaf disks cut from the first leaves of potted cowpea at the age of 13 to 15 days, which were fertilized as a single pre-plant application with three different levels of urea at rates of 0, 160, and 320 N kg·hm−2, respectively. After being checked the number of eggs, each leaf disk was transferred into a glass tube containing a section of young bean pod of cowpea, which was harvested from the field plants. Oviposition days of the focal females were recorded, and their offspring adult were sexed and counted. Sex ratios of offspring were calculated as proportion of males. The results showed that the females reared on leaf disks from plants fertilized with high N had significantly prolonged survival duration and oviposition duration, and shortened pre-oviposition period, and significantly greater oviposition rate and daily oviposition rate, compared to low N and medium N treatments. Offspring sex ratios for low N, medium N and high N treatments were 0.70, 0.59, and 0.45, respectively, which were significantly different among each other. The number of offspring females produced by the females increased as N application rate increased. The number of offspring adults for high N treatment was significantly higher than those for low N and medium N treatments. N application level had no effect on immature survival of the offspring. In conclusion, nitrogen fertilization impacts on development, reproduction, and sex ratio of M. usitatus. Nitrogen overfertilization increases offspring production of this thrips, with a female-biased sex ratio.
-
Key words:
- Megalurothrips usitatus /
- sex ratio /
- oviposition /
- Vigna unguiculata /
- nitrogen fertilizer
-
表 1 豇豆3种施N水平下普通大蓟马亲代雌虫的发育与产卵量
参数 低N 中N 高N 存活天数/d 18.86±0.67b 19.70±0.95b 24.48±1.29a 产卵前期/d 0.92±0.21a 0.91±0.21a 0.15±0.10b 产卵期/d 16.20±0.79b 17.16±1.10b 23.13±1.26a 产卵后期/d 1.75±0.26a 1.64±0.27a 1.20±0.19a 产卵量/(粒·雌−1) 46.51±4.38b 63.30±8.25b 100.13±5.99a 日产卵量/[粒·(雌·d)−1] 2.82±0.19b 3.36±0.29b 4.38±0.15a 注:表中数值为平均数±标准差,同一行数据后标有不同字母表示在P<0.05上差异显著。 -
[1] 张念台. 蓟马为害杂粮之习性及其防治[J]. 中华昆虫特刊, 1987(1): 55 − 72. [2] 邱海燕, 刘奎, 李鹏, 等. 豆大蓟马的生物学特性研究[J]. 热带作物学报, 2014, 35(12): 2437 − 2441. doi: 10.3969/j.issn.1000-2561.2014.12.021 [3] TANG L D, YAN K L, FU B L, et al. The life table parameters of Megalurothrips usitatus (Thysanoptera: Thripidae)on four leguminouscrops[J]. Florida Entomologist, 2015, 98(2): 620 − 625. doi: 10.1653/024.098.0235 [4] 谭珂, 李曼娟, 陈鑫, 等. 普通大蓟马产卵选择性初探[J]. 热带作物学报, 2015, 36(3): 587 − 590. doi: 10.3969/j.issn.1000-2561.2015.03.024 [5] 范咏梅, 童晓立, 高良举, 等. 普通大蓟马在海南豇豆上的空间分布型[J]. 环境昆虫学报, 2013, 35(6): 737 − 743. [6] 谭珂, 陈鑫, 李曼娟, 等. 普通大蓟马在3种豆类作物上的实验种群生命表研究[J]. 热带作物学报, 2015, 36(5): 956 − 960. doi: 10.3969/j.issn.1000-2561.2015.05.021 [7] 唐良德, 赵海燕, 付步礼, 等. 海南地区豆大蓟马田间种群的抗药性监测[J]. 环境昆虫学报, 2016, 38(5): 1032 − 1037. [8] 罗亚丽, 施丹, 乔雪莹, 等. 杀虫剂亚致死浓度对普通大蓟马繁殖的影响[J]. 应用昆虫学报, 2020, 57(2): 427 − 433. doi: 10.7679/j.issn.2095-1353.2020.048 [9] SCHOWALTER T D. Insect ecology: an ecosystem approach[M]. 4th ed. London, UK: Academic Press, 2016. [10] STUART R R, GAO Y L, LEI Z R. Thrips: pests of concern to China and the United States[J]. Agricultural Sciences in China, 2011, 10(6): 867 − 892. doi: 10.1016/S1671-2927(11)60073-4 [11] WANG K, SHIPP J L. Simulation model for the population dynamics of Frankliniella occidentalis (Thysanoptera: Thripidae) on greenhouse cucumber[J]. Environmental Entomology, 2001, 30(6): 1073 − 1081. doi: 10.1603/0046-225X-30.6.1073 [12] BONDY E C, HUNTER M S. Sex ratios in the haplodiploid herbivores, Aleyrodidae and Thysanoptera: a review and tools for study[M]//JURENKA R (ed. ). Advances in Insect Physiology. Vol. 56. Cambridge: Academic Press Inc. , 2019: 251-281. [13] WAN Y, HUSSAIN S, MERCHANT A, et al. Tomato spotted wilt orthotospovirus influences the reproduction of its insect vector, western flower thrips, Frankliniella occidentalis, to facilitate transmission[J]. Pest Management Science, 2020, 76(7): 2406 − 2414. doi: 10.1002/ps.5779 [14] KATLAV A, NGUYEN DT, COOK JM, et al. Constrained sex allocation after mating in a haplodiploid thrips species depends on maternal condition[J]. Evolution, 2021, 75(6): 1525 − 1536. doi: 10.1111/evo.14217 [15] 杨鹤鸣, 叶子龙, 黄慧秀, 等. 普通大蓟马子代性比对同种成虫气味的响应[J]. 热带生物学报, 2022, 13(6): 628 − 633. [16] AWMACK C S, LEATHER S R. Host plant quality and fecundity in herbivorous insects[J]. Annual Review of Entomology, 2002, 47: 817 − 844. doi: 10.1146/annurev.ento.47.091201.145300 [17] BALA B, SOOD A K, PATHANIA V S, et al. Effect of plant nutrition in insect pest management: a review[J]. Journal of Pharmacognosy and Phytochemistry, 2018, 7(4): 2737 − 2742. [18] 中华人民共和国农业部. 无公害食品 豇豆生产技术规程: NY/T 5079—2002 [S]. 北京: 中国标准出版社, 2006. [19] HUNT D, CARTER N, DRURY C. The influence of nitrogen on seedless cucumber resistance and susceptibility to western flower thrips[J]. Acta Horticulturae, 1999(481): 561 − 568. [20] BAEZ I, REITZ S R, FUNDERBURK J E, et al. Variation within and between Frankliniella thrips species in host plant utilization[J]. Journal of Insect Science (Online), 2011, 11(1): 41. [21] BRODBECK B V, STAVISKY J, FUNDERBURK J E, et al. Flower nitrogen status and populations of Frankliniella occidentalis feeding on Lycopersicon esculentum[J]. Entomologia Experimentalis et Applicata, 2001, 99(2): 165 − 172. doi: 10.1046/j.1570-7458.2001.00814.x [22] BRODBECK B V, FUNDERBURK J, STAVISKY J, et al. Recent advances in the nutritional ecology of Thysanoptera, or the lack thereof[M]//MARULLO R, MOUND L A (eds.). Thrips and tospoviruses: Proceedings of the 7th international symposium on Thysanoptera. Canberra: Australian National Insect Collection, 2002: 145–153. [23] MACKE E, MAGALHÃES S, BACH F, et al. Sex-ratio adjustment in response to local mate competition is achieved through an alteration of egg size in a haplodiploid spider mite[J]. Proceedings Biological Sciences, 2012, 279(1747): 4634 − 4642. doi: 10.1098/rspb.2012.1598 [24] TAGHIZADEH R, CHI H. Demography of Tetranychus urticae (Acari: Tetranychidae) under different nitrogen regimes with estimations of confidence intervals[J]. Crop Protection, 2022, 155: 105920. doi: 10.1016/j.cropro.2022.105920 [25] WERMELINGER B, DELUCCHI V. Effect of sex-ratio on multiplication of the two-spotted spider mite as affected by leaf nitrogen[J]. Experimental & Applied Acarology, 1990, 9(1/2): 11 − 18. [26] MOUDEN S, SARMIENTO K F, KLINKHAMER P G, et al. Integrated pest management in western flower thrips: past, present and future[J]. Pest Management Science, 2017, 73(5): 813 − 822. doi: 10.1002/ps.4531 [27] REITZ S R, GAO Y, KIRK W D J, et al. Invasion biology, ecology, and management of western flower thrips[J]. Annual Review of Entomology, 2020, 65: 17 − 37. doi: 10.1146/annurev-ento-011019-024947 [28] STAVISKY J, FUNDERBURK J, BRODBECK B V, et al. Population dynamics of Frankliniella spp. and tomato spotted wilt incidence as influenced by cultural management tactics in tomato[J]. Journal of Economic Entomology, 2002, 95(6): 1216 − 1221. doi: 10.1603/0022-0493-95.6.1216 [29] SCHUCH U K, REDAK R A, BETHKE J A. Cultivar, fertilizer and irrigation affect vegetative growth and susceptibility of chrysanthemum to western flower thrips[J]. Journal of the American Society for Horticultural Science, 1998, 123(4): 727 − 733. doi: 10.21273/JASHS.123.4.727 [30] DAVIES F, CHUANJIU HE C, AMANDA CHAU A, et al. Fertiliser application affects susceptibility of chrysanthemum to western flower thrips - abundance and influence on plant growth, photosynthesis and stomatal conductance[J]. The Journal of Horticultural Science and Biotechnology, 2005, 80(4): 403 − 412. doi: 10.1080/14620316.2005.11511952 [31] CHAU A, HEINZ K M, DAVIES FT. Influences of fertilization on population abundance, distribution, and control of Frankliniella occidentalis on chrysanthemum[J]. Entomologia Experimentalis et Applicata, 2005, 117(1): 27 − 39. doi: 10.1111/j.1570-7458.2005.00326.x [32] CHOW A, CHAU A, HEINZ K M. Reducing fertilization: a management tactic against western flower thrips on roses[J]. Journal of Applied Entomology, 2012, 136(7): 520 − 529. doi: 10.1111/j.1439-0418.2011.01674.x [33] ANANTHAKRISHNAN T N. Bionomics of thrips[J]. Annual Review of Entomology, 1993, 38: 71 − 92. doi: 10.1146/annurev.en.38.010193.000443 [34] MOLLEMA C, COLE R A. Low aromatic amino acid concentrations in leaf proteins determine resistance to Frankliniella occidentalis in four vegetable crops[J]. Entomologia Experimentalis et Applicata, 1996, 78(3): 325 − 333. doi: 10.1111/j.1570-7458.1996.tb00797.x [35] SYMPHORIEN A, KARUNGI J, ODONG T L, et al. Biochemical constituents influencing the resistance to flower bud thrips in cowpea [Vigna unguiculata (L.) Walp] germplasm[J]. The Journal of Animal and Plant Sciences, 2018, 28(1): 128 − 137. [36] RAJASHREE S B, KABRE G B, MORE S R, et al. Biochemical traits of groundnut genotypes for their reaction to thrips[J]. Pharma Innovation, 2021, 10(11): 126 − 132.