留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

秦岭地区植物系统发育和气候因子对开花物候格局的影响

唐欣然 薛乾怀 曾秀 杜彦君

唐欣然, 薛乾怀, 曾秀, 杜彦君. 秦岭地区植物系统发育和气候因子对开花物候格局的影响[J]. 热带生物学报, 2025, 16(2): 260-269. doi: 10.15886/j.cnki.rdswxb.20240043
引用本文: 唐欣然, 薛乾怀, 曾秀, 杜彦君. 秦岭地区植物系统发育和气候因子对开花物候格局的影响[J]. 热带生物学报, 2025, 16(2): 260-269. doi: 10.15886/j.cnki.rdswxb.20240043
TANG Xinran, XUE Qianhuai, ZENG Xiu, DU Yanjun. Effect of phylogeny and climate factors on flowering patterns in the Qinling Mountains Region[J]. Journal of Tropical Biology, 2025, 16(2): 260-269. doi: 10.15886/j.cnki.rdswxb.20240043
Citation: TANG Xinran, XUE Qianhuai, ZENG Xiu, DU Yanjun. Effect of phylogeny and climate factors on flowering patterns in the Qinling Mountains Region[J]. Journal of Tropical Biology, 2025, 16(2): 260-269. doi: 10.15886/j.cnki.rdswxb.20240043

秦岭地区植物系统发育和气候因子对开花物候格局的影响

doi: 10.15886/j.cnki.rdswxb.20240043
基金项目: 

国家自然科学基金项目(42261004)

详细信息
    第一作者:

    唐欣然(1999-),女。海南大学热带农林学院2021级硕士研究生。E-mail:tangxinran1999@163.com

    通信作者:

    杜彦君(1981-),男,研究员,博导。研究方向:植物物候学。E-mail:yanjun.du@hainanu.edu.cn

  • 中图分类号: S718.51

Effect of phylogeny and climate factors on flowering patterns in the Qinling Mountains Region

  • 摘要: 开花物候是植物最重要的生活史性状之一,是气候变化影响生态系统的最敏感的指标之一。从中国自然标本馆整理了共1 830个物种5 084条的开花数据及当地2000—2020年的气象数据,检验这两方面对开花物候的影响。结果表明,植物开花高峰出现在7月,开花模式多为单峰模式;不同科的植物开花物候有显著差异,同科内不同属植物之间物候期差异不显著,表明亲缘相近的物种开花时间更相近;秦岭地区开花物候格局受降水与温度的耦合机制的影响,其中降水是驱动秦岭植物群落开花的主要气候因子。本研究探究了植物系统发育因素和气候因素对亚热带与暖温带交错区的秦岭地区植物开花模式的影响。结果表明,在亚热带和温带交错区,植物系统发育关系和气候因素都可能影响植物开花物候格局。
  • [1] CLELAND E E, CHUINE I, MENZEL A, et al. Shifting plant phenology in response to global change[J]. Trends in Ecology and Evolution, 2007, 22(7):357-365.
    [2] TANG J, KÖRNER C, MURAOKA H, et al. Emerging opportunities and challenges in phenology:a review[J]. Ecosphere, 2016, 7(8):e01436.
    [3] 潘元琪,杜彦君,陈文德,等.植物物候是否能解释物种共存:以浙江古田山亚热带常绿阔叶林为例[J]. 中国科学:生命科学, 2020, 50(4):362-375.
    [4] DU Y, MAO L, QUEENBOROUGH S A, et al. Macroscale variation and environmental predictors of flowering and fruiting phenology in the Chinese angiosperm flora[J]. Journal of Biogeography, 2020, 47(11):2303-2314.
    [5] WRIGHT P, FERRIS SP, SARIN A, et al. Impact of corporate insider, blockholder, and institutional equity ownership on firm risk taking[J]. Academy of Management Journal, 1996, 39(2):441-458.
    [6] WOLKOVICH E M, ETTINGER A K. Back to the future for plant phenology research[J]. New Phytologist, 2014,203(4):1021-1024.
    [7] DU Y, MAO L, QUEENBOROUGH S A, et al. Phylogenetic constraints and trait correlates of flowering phenology in the angiosperm flora of China[J]. Global Ecology and Biogeography, 2015, 24(8):928-938.
    [8] KOCHMER J P, HANDEL S N. Constraints and competition in the evolution of flowering phenology[J]. Ecological Monographs, 1986, 56(4):303-325.
    [9] BOLMGREN K, COWAN P D. Time-size tradeoffs:a phylogenetic comparative study of flowering time, plant height and seed mass in a north-temperate flora[J]. Oikos, 2008,117(3):424-429.
    [10] DU H, HU F, ZENG F, et al. Spatial distribution of tree species in evergreen-deciduous broadleaf Karst forests in southwest China[J]. Scientific Reports, 2017, 7:15664.
    [11] FRANKIE G W, BAKER H G, OPLER P A. Tropical plant phenology:applications for studies in community ecology[M. Phenology and Seasonality Modeling. Berlin,Heidelberg:Springer, 1974:287-296.
    [12] BOYLE W A, BRONSTEIN J L. Phenology of tropical understory trees:patterns and correlates[J]. Revista De Biologia Tropical, 2012, 60(4):1415-1430.
    [13] REICH P B, BORCHERT R. Water stress and tree phenology in a tropical dry forest in the Lowlands of costa rica[J]. The Journal of Ecology, 1984, 72(1):61.
    [14] WRIGHT S J, VAN SCHAIK C P. Light and the phenology of tropical trees[J]. The American Naturalist, 1994,143(1):192-199.
    [15] KANG H, JANG J. Flowering patterns among angiosperm species in Korea:diversity and constraints[J]. Journal of Plant Biology, 2004, 47(4):348-355.
    [16] PRIMACK D, IMBRES C, PRIMACK R B, et al. Herbarium specimens demonstrate earlier flowering times in response to warming in Boston[J]. American Journal of Botany, 2004, 91(8):1260-1264.
    [17] MILLER-RUSHING A J, PRIMACK R B, PRIMACK D,et al. Photographs and herbarium specimens as tools to document phenological changes in response to global warming[J]. American Journal of Botany, 2006, 93(11):1667-1674.
    [18] ROBBIRT K M, DAVY A J, HUTCHINGS M J, et al.Validation of biological collections as a source of phenological data for use in climate change studies:a case study with the orchid Ophrys sphegodes[J]. Journal of Ecology, 2011, 99(1):235-241.
    [19] CALINGER K M, QUEENBOROUGH S, CURTIS P S.Herbarium specimens reveal the footprint of climate change on flowering trends across north-central North America[J]. Ecology Letters, 2013, 16(8):1037-1044.
    [20] EVERILL P H, PRIMACK R B, ELLWOOD E R, et al.Determining past leaf-out times of New England's deciduous forests from herbarium specimens[J]. American Journal of Botany, 2014, 101(8):1293-1300.
    [21] HART P L, BRANNAN J D, DE CHESNAY M. Resilience in nurses:an integrative review[J]. Journal of Nursing Management, 2014, 22(6):720-734.
    [22] PARK I W, SCHWARTZ M D. Long-term herbarium records reveal temperature-dependent changes in flowering phenology in the southeastern USA[J]. International Journal of Biometeorology, 2015, 59(3):347-355.
    [23] 邓晨晖.气候变化背景下秦岭山地物候时空变化及其响应[D]. 西北大学, 2018.
    [24] 董强,吴普侠,李军保,等.秦岭林木种质资源保护与利用现状分析[J]. 陕西林业科技, 2021, 49(3):100-102.
    [25] SONG Z, FU Y, DU Y, et al. Global warming increases latitudinal divergence in flowering dates of a perennial herb in humid regions across eastern Asia[J]. Agricultural and Forest Meteorology, 2021, 296:108209.
    [26] SONG Z, FU Y, DU Y, et al. Flowering phenology of a widespread perennial herb shows contrasting responses to global warming between humid and non-humid regions[J]. Functional Ecology, 2020, 34(9):1870-1881.
    [27] XAVIER PICÓF, RETANA J. The flowering pattern of the perennial herb Lobularia maritima:an unusual case in the Mediterranean Basin[J]. Acta Oecologica, 2001,22(4):209-217.
    [28] R Core Team. R:A Language and Environment for Statistical Computing. R Foundation for Statistical Computing[OL]. Vienna, 2021. https://www.R-project.org/.
    [29] MCATAMNEY L, NIGEL CORLETT E. RULA:a survey method for the investigation of work-related upper limb disorders[J]. Applied Ergonomics, 1993, 24(2):91-99.
    [30] PEI N C, KRESS W J, CHEN Bet al. Phylogenetic and climatic constraints drive flowering phenological patterns in a subtropical nature reserve[J]. Journal of Plant Ecology, 2015, 8(2):187-196.
    [31] 胡小丽,张杨家豪,米湘成,等.浙江古田山亚热带常绿阔叶林开花物候:气候因素、系统发育关系和功能性状的影响[J]. 生物多样性, 2015, 23(5):601-609.
    [32] CHANG-YANG C, NEEDHAM J, LU C, et al. Closing the life cycle of forest trees:the difficult dynamics of seedling-to-sapling transitions in a subtropical rainforest[J]. Journal of Ecology, 2021, 109:2705-2716.
    [33] GOULD S J, LEWONTIN R C. The spandrels of San Marco and the Panglossian paradigm:a critique of the adaptationist programme[J]. Proceedings of the Royal Society of London Series B, Biological Sciences, 1979,205(1161):581-598.
    [34] JOHNSON D W, JOHNSON R T. Cooperative learning and social interdependence theory[M] //Theory and Research on Small Groups. Boston:Kluwer Academic Publishers, 2005:9-35.
    [35] REICH P, WRIGHT I, CAVENDER-BARES J, et al.The evolution of plant functional variation:traits, spectra,and strategies[J]. International Journal of Plant Sciences,2003, 164(S3):S143-S164.
    [36] VANCE C P, UHDE-STONE C, ALLAN D L. Phosphorus acquisition and use:critical adaptations by plants for securing a nonrenewable resource[J]. The New Phytologist, 2003, 157(3):423-447.
    [37] DAVIES T, WOLKOVICH E, KRAFT N, et al. Phylogenetic conservatism in plant phenology[J]. Journal of Ecology, 2013, 101(6):1520-1530.
    [38] CASSIANO P, DAVID G, JANA V. Flowering time responses to climate differ between species in mesic and xeric habitats in Alberta[J]. Botany, 2024.
  • [1] 许丹勇, 王远铭, 林思鸿, 王宇洋, 李华东, 邢军, 马亚龙, 林电.  ‘南鹿一号’莲雾果实生长发育与品质的形成 . 热带生物学报, 2025, 16(): 1-10. doi: 10.15886/j.cnki.rdswxb.20240082
    [2] 宋喆, 曹凤勤, 温健, 林先武, 颜日辉.  瓜实蝇活体胚胎内部发育及发育阶段研究 . 热带生物学报, 2025, 16(2): 196-205. doi: 10.15886/j.cnki.rdswxb.20240005
    [3] 周海燕, 林积泉, 刘文杰, 孙仲益, 詹华思, 章杰.  中国十大水资源区的植被时空演变特征及其对极端气候的响应敏感性 . 热带生物学报, 2025, 16(1): 43-57. doi: 10.15886/j.cnki.rdswxb.20240016
    [4] 康申辰, 孙晨皓, 杨欣悦, 赵源杰, 陈宇, 刘萌萌.  海口地区伴侣犬无形体血清流行病学调查及相关风险因素分析 . 热带生物学报, 2025, 16(): 1-9. doi: 10.15886/j.cnki.rdswxb.20240153
    [5] 黄玉媛, 叶倩倩, 陈庆河, 梁启福.  PcSec62参与调控辣椒疫霉生长发育及致病性 . 热带生物学报, 2025, 16(): 1-10. doi: 10.15886/j.cnki.rdswxb.20240170
    [6] 丁一鸣, 董晓杰, 马志泽, 黄光耀, 任明迅, 王文娟.  木棉稻田农林复合系统中丰富类和稀有类微生物的分布特征及影响因素 . 热带生物学报, 2025, 16(2): 270-280. doi: 10.15886/j.cnki.rdswxb.20240118
    [7] 赵金铃, 潘晋龙, 吴宇垚, 韩昊祥, 张怀方, 陈新, 曾长英.  不同氮源处理对4个木薯品种幼苗生长发育的影响 . 热带生物学报, 2024, 15(1): 19-26. doi: 10.15886/j.cnki.rdswxb.20230018
    [8] 李佳雪, 丁一, 王猛, 李涛, 郭攀阳, 刘成立, 韦双双, 黄家权, 李洪立, 胡文斌, 汤华.  火龙果HubHLH基因家族的全基因组分析及其对冬季补光诱导开花的表达响应 . 热带生物学报, 2024, 15(2): 198-209. doi: 10.15886/j.cnki.rdswxb.20220108
    [9] 雷济舟, 崔嵬, 朱济帅, 张润卿, 赵俊福, 章杰, 张翔, 孙仲益.  海南岛近20年GPP变化格局及驱动因素分析 . 热带生物学报, 2024, 15(1): 42-51. doi: 10.15886/j.cnki.rdswxb.20230006
    [10] 刘文, 董斌, 叶子龙, 谢月亮, 张祥会, 李荣喜, 刘光华.  不同催花方法对‘台农16号’凤梨开花和果实品质的影响 . 热带生物学报, 2024, 15(3): 315-322. doi: 10.15886/j.cnki.rdswxb.20230091
    [11] 梁月华, 王艺宸, 王自芹, 崔嵬, 乌兰, 孙仲益.  极端天气对海南岛橡胶林物候的影响 . 热带生物学报, 2024, 15(5): 547-557. doi: 10.15886/j.cnki.rdswxb.20240055
    [12] 王鑫洋, 王媛, 杨华, 张泽, 杜彦君.  构树叶物候持续时间的纬度格局 . 热带生物学报, 2023, 14(4): 405-411. doi: 10.15886/j.cnki.rdswxb.2023.04.008
    [13] 吕润, 车秀芬, 吴慧, 陈小敏, 张亚杰, 邹海平, 白蕤.  海南两系杂交稻制种关键发育期气候风险区划 . 热带生物学报, 2023, 14(1): 77-81. doi: 10.15886/j.cnki.rdswxb.2023.01.010
    [14] 朱清, 范鹤龄, 孙雪冰, 王位, 黄小龙, 李长江, 张荣萍.  链霉菌和壳寡糖对辣椒幼苗生长发育的影响 . 热带生物学报, 2022, 13(5): 509-513. doi: 10.15886/j.cnki.rdswxb.2022.05.012
    [15] 吴慧, 陈小敏, 邢彩盈, 朱晶晶, 吴胜安, 胡德强.  两系杂交水稻南繁制种安全敏感期低温过程的气候特征 . 热带生物学报, 2022, 13(4): 382-390. doi: 10.15886/j.cnki.rdswxb.2022.04.009
    [16] 张京红, 张明洁, 张亚杰, 杨静.  海南气候康养指数的构建及评估 . 热带生物学报, 2022, 13(4): 410-415. doi: 10.15886/j.cnki.rdswxb.2022.04.013
    [17] 张亚杰, 陈升孛, 杨静, 张明洁, 张京红.  琼中绿橙气候品质认证技术研究 . 热带生物学报, 2022, 13(4): 391-396. doi: 10.15886/j.cnki.rdswxb.2022.04.010
    [18] 吴胜安, 邢彩盈, 朱晶晶.  海南岛气候特征分析 . 热带生物学报, 2022, 13(4): 315-323. doi: 10.15886/j.cnki.rdswxb.2022.04.001
    [19] 刘应帅, 余瑞, 郑彬彬, 刘嘉慧, 宋奇, 陈荣昊, 严哲.  海南岛森林植被NEP季节性时空变化规律及气候驱动因素分析 . 热带生物学报, 2022, 13(2): 166-176. doi: 10.15886/j.cnki.rdswxb.2022.02.008
    [20] 张瑜, 任瑜潇, 刘相波, 朱铭, 王爱民, 李秀保.  潜水旅游对珊瑚礁生态系统影响研究的进展 . 热带生物学报, 2021, 12(2): 261-270. doi: 10.15886/j.cnki.rdswxb.2021.02.016
  • 加载中
  • 计量
    • 文章访问数:  17
    • HTML全文浏览量:  3
    • PDF下载量:  0
    • 被引次数: 0
    出版历程
    • 收稿日期:  2024-03-13
    • 修回日期:  2024-03-22

    秦岭地区植物系统发育和气候因子对开花物候格局的影响

    doi: 10.15886/j.cnki.rdswxb.20240043
      基金项目:

      国家自然科学基金项目(42261004)

      作者简介:

      唐欣然(1999-),女。海南大学热带农林学院2021级硕士研究生。E-mail:tangxinran1999@163.com

      通讯作者: 杜彦君(1981-),男,研究员,博导。研究方向:植物物候学。E-mail:yanjun.du@hainanu.edu.cn
    • 中图分类号: S718.51

    摘要: 开花物候是植物最重要的生活史性状之一,是气候变化影响生态系统的最敏感的指标之一。从中国自然标本馆整理了共1 830个物种5 084条的开花数据及当地2000—2020年的气象数据,检验这两方面对开花物候的影响。结果表明,植物开花高峰出现在7月,开花模式多为单峰模式;不同科的植物开花物候有显著差异,同科内不同属植物之间物候期差异不显著,表明亲缘相近的物种开花时间更相近;秦岭地区开花物候格局受降水与温度的耦合机制的影响,其中降水是驱动秦岭植物群落开花的主要气候因子。本研究探究了植物系统发育因素和气候因素对亚热带与暖温带交错区的秦岭地区植物开花模式的影响。结果表明,在亚热带和温带交错区,植物系统发育关系和气候因素都可能影响植物开花物候格局。

    English Abstract

    唐欣然, 薛乾怀, 曾秀, 杜彦君. 秦岭地区植物系统发育和气候因子对开花物候格局的影响[J]. 热带生物学报, 2025, 16(2): 260-269. doi: 10.15886/j.cnki.rdswxb.20240043
    引用本文: 唐欣然, 薛乾怀, 曾秀, 杜彦君. 秦岭地区植物系统发育和气候因子对开花物候格局的影响[J]. 热带生物学报, 2025, 16(2): 260-269. doi: 10.15886/j.cnki.rdswxb.20240043
    TANG Xinran, XUE Qianhuai, ZENG Xiu, DU Yanjun. Effect of phylogeny and climate factors on flowering patterns in the Qinling Mountains Region[J]. Journal of Tropical Biology, 2025, 16(2): 260-269. doi: 10.15886/j.cnki.rdswxb.20240043
    Citation: TANG Xinran, XUE Qianhuai, ZENG Xiu, DU Yanjun. Effect of phylogeny and climate factors on flowering patterns in the Qinling Mountains Region[J]. Journal of Tropical Biology, 2025, 16(2): 260-269. doi: 10.15886/j.cnki.rdswxb.20240043
    参考文献 (38)

    目录

      /

      返回文章
      返回