留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

极端天气对海南岛橡胶林物候的影响

梁月华 王艺宸 王自芹 崔嵬 乌兰 孙仲益

梁月华, 王艺宸, 王自芹, 崔嵬, 乌兰, 孙仲益. 极端天气对海南岛橡胶林物候的影响[J]. 热带生物学报, 2024, 15(5): 547-557. doi: 10.15886/j.cnki.rdswxb.20240055
引用本文: 梁月华, 王艺宸, 王自芹, 崔嵬, 乌兰, 孙仲益. 极端天气对海南岛橡胶林物候的影响[J]. 热带生物学报, 2024, 15(5): 547-557. doi: 10.15886/j.cnki.rdswxb.20240055
LIANG Yuehua, WANG Yichen, WANG Ziqin, CUI Wei, WU Lan, SUN Zhongyi. The impact of extreme weather on the phenology of rubber plantations in Hainan Island, China[J]. Journal of Tropical Biology, 2024, 15(5): 547-557. doi: 10.15886/j.cnki.rdswxb.20240055
Citation: LIANG Yuehua, WANG Yichen, WANG Ziqin, CUI Wei, WU Lan, SUN Zhongyi. The impact of extreme weather on the phenology of rubber plantations in Hainan Island, China[J]. Journal of Tropical Biology, 2024, 15(5): 547-557. doi: 10.15886/j.cnki.rdswxb.20240055

极端天气对海南岛橡胶林物候的影响

doi: 10.15886/j.cnki.rdswxb.20240055
基金项目: 

国家自然科学基金青年科学基金项目(42101101)

国家自然科学基金地区科学基金项目(32160320)

海南省“南海新星”科技创新人才平台项目(NHXXRCXM202303)

详细信息
    第一作者:

    梁月华(1999-),女,硕士。研究方向:热带森林的全球变化响应。E-mail:22210713000022@hainanu.edu.cn

    通信作者:

    孙仲益(1989-),男,博士,副教授。研究方向:碳循环与陆地生态系统建模。E-mail:gis.rs@hainanu.edu.cn

  • 中图分类号: Q948

The impact of extreme weather on the phenology of rubber plantations in Hainan Island, China

  • 摘要: 随着气候变化的加剧,极端天气事件频率和强度均有所增加,其对生态系统结构和功能的影响远高于渐进的趋势变化。热带森林作为陆地生态系统的重要组成部分,其物候对于气候变化的响应始终为研究热点,但由于其高植物多样性与常绿性特征而无法统一科学发现。本研究以物候特征明显的纯林橡胶林为研究切入点,逐像元多曲线拟合橡胶林物候,通过机器学习等手段筛选了物候响应敏感的极端天气事件,揭示了2003—2018年期间的春季物候(Start of growing Season, SOS)、秋季物候(End of growing Season, EOS)和极端天气事件的时空分布模式;基于偏相关性分析,探究了极端气候指数对物候的影响。结果表明:(1)研究期间海南岛橡胶林SOS多以0.73 d·a-1的趋势提前,EOS多以0.60 d·a-1的趋势推迟;少数极冷事件呈逐年增加趋势,而极热事件则呈相反趋势;(2)极端昼夜温度是影响SOS、EOS的主要因素,冷夜日数(TN10p)、冷日日数(TX10p)与SOS呈正相关,而暖夜日数(TN90p)、暖日日数(TX90p)与SOS呈负相关;TN10p、TN90p、TX90p与EOS呈正相关,但TX10p与EOS呈负相关;(3)SOS、EOS对不同强度和频率的极端天气事件的响应在空间上存在明显的东西差异。本研究结果表明考虑极端天气因素能够增进对热带森林结构与功能响应气候变化的理解。
  • [1] XU Y, LI X, DU H, et al. Improving extraction phenology accuracy using SIF coupled with the vegetation index and mapping the spatiotemporal pattern of bamboo forest phenology[J]. Remote Sensing of Environment, 2023, 297:113785.
    [2] LI Q, CHEN X, YUAN W, et al. Remote sensing of seasonal climatic constraints on leaf phenology across pantropical evergreen forest biome[J]. Earth's Future, 2021,9(9):e2021EF002160.
    [3] WOLKOVICH E M, COOK B I, ALLEN J M, et al. Warming experiments underpredict plant phenological responses to climate change[J]. Nature, 2012, 485(7399):494-497.
    [4] PIAO S, LIU Z, WANG T, et al. Weakening temperature control on the interannual variations of spring carbon uptake across northern lands[J]. Nature Climate Change,2017(7):359-363.
    [5] 徐波.全球变暖对植物物候的影响[J].大众科技,2018, 20(9):22-25.
    [6] WANG M, WANG S, ZHAO J, et al. Global positive gross primary productivity extremes and climate contributions during 1982-2016[J]. The Science of the Total Environment, 2021, 774:145703.
    [7] ZHOU G Y, ZHOU L Y, SHAO J J, et al. Effects of extreme drought on terrestrial ecosystems:review and prospects[J]. Chinese Journal of Plant Ecology, 2020,44(5):515-525.
    [8] Intergovernmental Panel on Climate Change (IPCC). AR6Climate Change 2021:The Physical Science Basis[M].Cambridge:Cambridge University Press, 2021.
    [9] Intergovernmental Panel on Climate Change (IPCC).Global Warming of 1.5℃:IPCC Special Report on Impacts of Global Warming of 1.5℃ above Pre-Industrial Levels in Context of Strengthening Response to Climate Change, Sustainable Development, and Efforts to Eradicate Poverty[M]. Cambridge:Cambridge University Press;2022.
    [10] LI P, LIU Z, ZHOU X, et al. Combined control of multiple extreme climate stressors on autumn vegetation phenology on the Tibetan Plateau under past and future climate change[J]. Agricultural and Forest Meteorology,2021, 308/309:108571.
    [11] MULDER C P H, ILES D T, ROCKWELL R F.Increased variance in temperature and lag effects alter phenological responses to rapid warming in a subarctic plant community[J]. Global Change Biology, 2017,23(2):801-814.
    [12] LI Y, ZHANG W, SCHWALM C R, et al. Widespread spring phenology effects on drought recovery of Northern Hemisphere ecosystems[J]. Nature Climate Change,2023, 13:182-188.
    [13] HE L, WANG J, CIAIS P, et al. Non-symmetric responses of leaf onset date to natural warming and cooling in northern ecosystems[J]. PNAS Nexus, 2023, 2(9):pgad308.
    [14] MENG F, ZHANG L, ZHANG Z, et al. Opposite effects of winter day and night temperature changes on early phenophases[J]. Ecology, 2019, 100(9):e02775.
    [15] PIAO S, ZHANG X, CHEN A, et al. The impacts of climate extremes on the terrestrial carbon cycle:a review[J].Science China Earth Sciences, 2019, 62(10):1551-1563.
    [16] SONG G, WU S, LEE C K F, et al. Monitoring leaf phenology in moist tropical forests by applying a superpixelbased deep learning method to time-series images of tree canopies[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 183:19-33.
    [17] WANG J, SONG G, LIDDELL M, et al. An ecologicallyconstrained deep learning model for tropical leaf phenology monitoring using PlanetScope satellites[J]. Remote Sensing of Environment, 2023, 286:113429.
    [18] MEDINA-VEGA J A, WRIGHT S J, BONGERS F, et al.Vegetative phenologies of lianas and trees in two Neotropical forests with contrasting rainfall regimes[J]. The New Phytologist, 2022, 235(2):457-471.
    [19] ITIOKA T, YAMAUTI M. Severe drought, leafing phenology, leaf damage and lepidopteran abundance in the canopy of a Bornean aseasonal tropical rain forest[J].Journal of Tropical Ecology, 2004, 20(4):479-482.
    [20] SUN H, YAN L, LI Z, et al. Drought shortens subtropical understory growing season by advancing leaf senescence[J].Global Change Biology, 2024, 30(5):e17304.
    [21] WANG F, ZHANG R, LIN J, et al. High autumn temperatures increase the depth of bud dormancy in the subtropical Torreya grandis and Carya illinoinensis and delay leaf senescence in the deciduous Carya[J]. Trees, 2022,36(3):1053-1065.
    [22] LI X, FU Y H, CHEN S, et al. Increasing importance of precipitation in spring phenology with decreasing latitudes in subtropical forest area in China[J]. Agricultural and Forest Meteorology, 2021108427.
    [23] BENNETT A C, RODRIGUES DE SOUSA T,MONTEAGUDO-MENDOZA A, et al. Sensitivity of South American tropical forests to an extreme climate anomaly[J]. Nature Climate Change, 2023(13):967-974.
    [24] CHEN S, FU Y H, HAO F, et al. Vegetation phenology and its ecohydrological implications from individual to global scales[J]. Geography and Sustainability, 2022,3(4):334-338.
    [25] BUITENWERF R, ROSE L, HIGGINS S I. Three decades of multi-dimensional change in global leaf phenology[J]. Nature Climate Change, 2015, 5:364-368.
    [26] 范德芹,赵学胜,朱文泉,等.植物物候遥感监测精度影响因素研究综述[J].地理科学进展, 2016, 35(3):304-319.
    [27] 代武君,金慧颖,张玉红,等.植物物候学研究进展[J].生态学报, 2020, 40(19):6705-6719.
    [28] YANG X, WU J, CHEN X, et al. A comprehensive framework for seasonal controls of leaf abscission and productivity in evergreen broadleaved tropical and subtropical forests[J]. Innovation (Cambridge (Mass)), 2021, 2(4):100154.
    [29] PARK D S, LYRA G M, ELLISON A M, et al. Herbarium records provide reliable phenology estimates in the understudied tropics[J]. Journal of Ecology, 2023, 111(2):327-337.
    [30] 代奎,曾秀,王鑫洋,等.春季增温对亚热带木本植物物候和生长的影响[J].生态学杂志, 2021, 40(12):3881-3889.
    [31] 包青格乐,张润卿,王艺宸,等. 2000-2020年海南岛天然橡胶人工林分布变化数据集[J].中国科学数据,2023, 8(4):364-375.
    [32] KONG D, ZHANG Y, WANG D, et al. Photoperiod explains the asynchronization between vegetation carbon phenology and vegetation greenness phenology[J]. Journal of Geophysical Research:Biogeosciences, 2020, 125(8):e2020JG005636.
    [33] KONG D, MCVICAR T R, XIAO M, et al. phenofit:an R package for extracting vegetation phenology from time series remote sensing[J]. Methods in Ecology and Evolution, 2022, 13(7):1508-1527.
    [34] LI X, DU H, ZHOU G, et al. Spatiotemporal patterns of remotely sensed phenology and their response to climate change and topography in subtropical bamboo forests during2001-2017:a case study in Zhejiang Province, China[J].GIScience&Remote Sensing, 2023, 60(1):2163575.
    [35] WANG M, LI P, PENG C, et al. Divergent responses of autumn vegetation phenology to climate extremes over northern middle and high latitudes[J]. Global Ecology and Biogeography, 2022, 31(11):2281-2296.
    [36] WANG M, ZHANG S, GUO X, et al. Responses of soil organic carbon to climate extremes under warming across global biomes[J]. Nature Climate Change, 2024, 14:98-105.
    [37] MEERAN K, VERBRIGGHE N, INGRISCH J, et al.Individual and interactive effects of warming and nitrogen supply on CO2 fluxes and carbon allocation in subarctic grassland[J]. Global Change Biology, 2023, 29(18):5276-5291.
    [38] BYRNE M P. Amplified warming of extreme temperatures over tropical land[J]. Nature Geoscience, 2021, 14:837-841.
    [39] CAO Y, GUO W, GE J, et al. Greening vegetation cools mean and extreme near-surface air temperature in China[J].Environmental Research Letters, 2024, 19(1):014040.
    [40] 王顿,杨秀玖,李习文,等.基于AHP的海南岛生态地质环境质量综合评价与分析[J].环境生态学, 2024,6(3):33-43.
    [41] MA Q Q, HUANG J G, HÄNNINEN H, et al. Climate warming prolongs the time interval between leaf-out and flowering in temperate trees:Effects of chilling, forcing and photoperiod[J]. Journal of Ecology, 2021, 109(3):1319-1330.
    [42] YANG X, WU J, CHEN X, et al. A comprehensive framework for seasonal controls of leaf abscission and productivity in evergreen broadleaved tropical and subtropical forests[J]. Innovation (Cambridge (Mass)), 2021, 2(4):100154.
    [43] ZHANG J, CHEN S, WU Z, et al. Review of vegetation phenology trends in China in a changing climate[J].Progress in Physical Geography:Earth and Environment,2022, 46(6):829-845.
    [44] JEWARIA P K, HÄNNINEN H, LI X, et al. A hundred years after:endodormancy and the chilling requirement in subtropical trees[J]. The New Phytologist, 2021, 231(2):565-570.
    [45] CHEN X, WANG L, INOUYE D. Delayed response of spring phenology to global warming in subtropics and tropics[J]. Agricultural and Forest Meteorology, 2017,234:222-235.
    [46] PAN Y Q, ZENG X, CHEN W D, et al. Chilling rather than photoperiod controls budburst for gymnosperm species in subtropical China[J]. Journal of Plant Ecology,2022, 15(1):100-110.
    [47] GUO J, MA Q, XU H, et al. Meta-analytic and experimental evidence that warmer climate leads to shift from advanced to delayed spring phenology[J]. Agricultural and Forest Meteorology, 2023, 342:109721.
    [48] ZHANG L, ZHENG J, HÄNNINEN H, et al. Differences between four sympatric subtropical tree species in the interactive effects of three environmental cues on leaf-out phenology[J]. Agricultural and Forest Meteorology,2022, 327:109227.
    [49] WANG H, WU C, CIAIS P, et al. Overestimation of the effect of climatic warming on spring phenology due to misrepresentation of chilling[J]. Nature Communications, 2020, 11(1):4945.
    [50] WANG H, DAI J, PEÑUELAS J, et al. Winter warming offsets one half of the spring warming effects on leaf unfolding[J]. Global Change Biology, 2022, 28(20):6033-6049.
    [51] GUO F, JIN J, YONG B, et al. Responses of water use efficiency to phenology in typical subtropical forest ecosystems-a case study in Zhejiang Province[J]. Science China Earth Sciences, 2020, 63(1):145-156.
    [52] REN P, LIU Z, ZHOU X, et al. Strong controls of daily minimum temperature on the autumn photosynthetic phenology of subtropical vegetation in China[J]. Forest Ecosystems, 2021, 8(1):31.
    [53] WANG F, ZHANG R, LIN J, et al. High autumn temperatures increase the depth of bud dormancy in the subtropical Torreya grandis and Carya illinoinensis and delay leaf senescence in the deciduous Carya[J]. Trees, 2022,36(3):1053-1065.
    [54] FU Y H, LI X, CHEN S, et al. Soil moisture regulates warming responses of autumn photosynthetic transition dates in subtropical forests[J]. Global Change Biology,2022, 28(16):4935-4946.
    [55] LIAN X, PEÑUELAS J, RYU Y, et al. Diminishing carryover benefits of earlier spring vegetation growth[J].Nature Ecology&Evolution, 2024, 8(2):218-228.
    [56] ZENG Z, WU W, GE Q, et al. Legacy effects of spring phenology on vegetation growth under preseason meteorological drought in the Northern Hemisphere[J]. Agricultural and Forest Meteorology, 2021, 310:108630.
  • [1] 彭晓莹, 金海峰, 闫文乾, 咸利民, 席羽, 张宝琴.  三叶草斑潜蝇过氧化氢酶基因的克隆、表达及其对温度的响应 . 热带生物学报, 2025, 16(): 1-10. doi: 10.15886/j.cnki.rdswxb.20240033
    [2] 吕晓琴, 陈小敏, 潘志华, 吕润.  海南岛春季两系杂交水稻安全制种时空分布研究 . 热带生物学报, 2025, 16(): 1-9. doi: 10.15886/j.cnki.rdswxb.20240178
    [3] 陈虹, 段洪浪, 吴建平.  土壤理化性质和微生物群落组成对极端水分胁迫的响应 . 热带生物学报, 2025, 16(): 1-9. doi: 10.15886/j.cnki.rdswxb.20240119
    [4] 周海燕, 林积泉, 刘文杰, 孙仲益, 詹华思, 章杰.  中国十大水资源区的植被时空演变特征及其对极端气候的响应敏感性 . 热带生物学报, 2025, 16(1): 43-57. doi: 10.15886/j.cnki.rdswxb.20240016
    [5] 林冲, 田光辉, 刘少军, 辛红雨, 赵婷, 甘业星.  南海POC沉积通量时空变化的遥感分析 . 热带生物学报, 2024, 15(5): 599-607. doi: 10.15886/j.cnki.rdswxb.20240003
    [6] 童立豪, 黄良夫, 吴翔宇, 石耀华, 唐贤明.  切段部位、长度和培养温度对琼枝藻繁殖的影响 . 热带生物学报, 2024, 15(3): 361-367. doi: 10.15886/j.cnki.rdswxb.20230102
    [7] 贾新蕾, 黄增朝, 杨林狄, 吕静, 李妍萍, 简纪常, 黄郁葱.  不同培养温度的鱼源海豚链球菌转录组分析 . 热带生物学报, 2024, 15(1): 109-121. doi: 10.15886/j.cnki.rdswxb.20230027
    [8] 孙玉娟, 钟丽爽, 杨小波, 张翔.  短期降水减少对海南橡胶林土壤有机碳矿化及有机碳组分的影响 . 热带生物学报, 2024, 15(3): 272-280. doi: 10.15886/j.cnki.rdswxb.20230096
    [9] 邹海平, 张京红, 李伟光, 陈小敏, 白蕤, 吕润.  海南岛水稻需水量与缺水量的时空变化特征 . 热带生物学报, 2023, 14(5): 569-576. doi: 10.15886/j.cnki.rdswxb.20230074
    [10] 张培春, 杨小波, 夏丹, 王群, 王豪, 曾润娟, 戚春林, 李东海, 陈琳, 田璐嘉, 李晨笛, 李龙, 梁彩群.  海南鹦哥岭附生兰物种组成、分布及与生态因子的关系 . 热带生物学报, 2022, 13(2): 149-159. doi: 10.15886/j.cnki.rdswxb.2022.02.006
    [11] 李光伟, 邢峰华, 敖杰, 毛志远.  海南岛30年空中云水资源时空特征分析 . 热带生物学报, 2022, 13(4): 331-338. doi: 10.15886/j.cnki.rdswxb.2022.04.003
    [12] 代霖欣, 周小磊, 杨术, 侯丹清, 孙成波.  高位处理水精养虾池水体浮游生物的时空变化 . 热带生物学报, 2022, 13(5): 429-439. doi: 10.15886/j.cnki.rdswxb.2022.05.002
    [13] 符传博, 佟金鹤, 徐文帅, 刘丽君.  海南岛臭氧污染时空特征及其成因分析 . 热带生物学报, 2022, 13(4): 404-409. doi: 10.15886/j.cnki.rdswxb.2022.04.012
    [14] 陈红, 郭冬艳, 吴俞, 李勋.  两类季风槽特征及海南岛的强降水机制 . 热带生物学报, 2022, 13(4): 348-357. doi: 10.15886/j.cnki.rdswxb.2022.04.005
    [15] 董凌宇, 林晓斌, 翁小芳.  4种配对方法在海南秋季雷达定量估测降水中的效果对比 . 热带生物学报, 2022, 13(4): 358-366. doi: 10.15886/j.cnki.rdswxb.2022.04.006
    [16] 杨静, 张亚杰, 张京红, 张明洁.  基于MODIS NDVI的海南岛植被覆盖面积的反演技术 . 热带生物学报, 2022, 13(4): 397-403. doi: 10.15886/j.cnki.rdswxb.2022.04.011
    [17] 程贤松, 李亚军, 李兴涵, 李江月, 黄晓晴, 邓晓东.  三亚湾春秋浮游植物分布及其与环境因子的关系 . 热带生物学报, 2021, 12(1): 15-24. doi: 10.15886/j.cnki.rdswxb.2021.01.003
    [18] 徐航, 刘贤青, 袁弘伦, 罗杰.  槟榔碱合成前体物质的空间分布及槟榔碱合成通路解析 . 热带生物学报, 2021, 12(3): 271-278. doi: 10.15886/j.cnki.rdswxb.2021.03.001
    [19] 白浩楠, 牛香, 王兵, 宋庆丰, 龙文兴.  大岗山常绿阔叶林不同生活型树种多度分布格局 . 热带生物学报, 2021, 12(1): 49-56. doi: 10.15886/j.cnki.rdswxb.2021.01.007
    [20] 吴娇, 孔丹宇, 万迎朗.  浅析国际槟榔文化及各国管理政策 . 热带生物学报, 2020, 11(4): 523-532. doi: 10.15886/j.cnki.rdswxb.2020.04.016
  • 加载中
  • 计量
    • 文章访问数:  16
    • HTML全文浏览量:  1
    • PDF下载量:  0
    • 被引次数: 0
    出版历程
    • 收稿日期:  2024-04-02
    • 修回日期:  2024-05-13

    极端天气对海南岛橡胶林物候的影响

    doi: 10.15886/j.cnki.rdswxb.20240055
      基金项目:

      国家自然科学基金青年科学基金项目(42101101)

      国家自然科学基金地区科学基金项目(32160320)

      海南省“南海新星”科技创新人才平台项目(NHXXRCXM202303)

      作者简介:

      梁月华(1999-),女,硕士。研究方向:热带森林的全球变化响应。E-mail:22210713000022@hainanu.edu.cn

      通讯作者: 孙仲益(1989-),男,博士,副教授。研究方向:碳循环与陆地生态系统建模。E-mail:gis.rs@hainanu.edu.cn
    • 中图分类号: Q948

    摘要: 随着气候变化的加剧,极端天气事件频率和强度均有所增加,其对生态系统结构和功能的影响远高于渐进的趋势变化。热带森林作为陆地生态系统的重要组成部分,其物候对于气候变化的响应始终为研究热点,但由于其高植物多样性与常绿性特征而无法统一科学发现。本研究以物候特征明显的纯林橡胶林为研究切入点,逐像元多曲线拟合橡胶林物候,通过机器学习等手段筛选了物候响应敏感的极端天气事件,揭示了2003—2018年期间的春季物候(Start of growing Season, SOS)、秋季物候(End of growing Season, EOS)和极端天气事件的时空分布模式;基于偏相关性分析,探究了极端气候指数对物候的影响。结果表明:(1)研究期间海南岛橡胶林SOS多以0.73 d·a-1的趋势提前,EOS多以0.60 d·a-1的趋势推迟;少数极冷事件呈逐年增加趋势,而极热事件则呈相反趋势;(2)极端昼夜温度是影响SOS、EOS的主要因素,冷夜日数(TN10p)、冷日日数(TX10p)与SOS呈正相关,而暖夜日数(TN90p)、暖日日数(TX90p)与SOS呈负相关;TN10p、TN90p、TX90p与EOS呈正相关,但TX10p与EOS呈负相关;(3)SOS、EOS对不同强度和频率的极端天气事件的响应在空间上存在明显的东西差异。本研究结果表明考虑极端天气因素能够增进对热带森林结构与功能响应气候变化的理解。

    English Abstract

    梁月华, 王艺宸, 王自芹, 崔嵬, 乌兰, 孙仲益. 极端天气对海南岛橡胶林物候的影响[J]. 热带生物学报, 2024, 15(5): 547-557. doi: 10.15886/j.cnki.rdswxb.20240055
    引用本文: 梁月华, 王艺宸, 王自芹, 崔嵬, 乌兰, 孙仲益. 极端天气对海南岛橡胶林物候的影响[J]. 热带生物学报, 2024, 15(5): 547-557. doi: 10.15886/j.cnki.rdswxb.20240055
    LIANG Yuehua, WANG Yichen, WANG Ziqin, CUI Wei, WU Lan, SUN Zhongyi. The impact of extreme weather on the phenology of rubber plantations in Hainan Island, China[J]. Journal of Tropical Biology, 2024, 15(5): 547-557. doi: 10.15886/j.cnki.rdswxb.20240055
    Citation: LIANG Yuehua, WANG Yichen, WANG Ziqin, CUI Wei, WU Lan, SUN Zhongyi. The impact of extreme weather on the phenology of rubber plantations in Hainan Island, China[J]. Journal of Tropical Biology, 2024, 15(5): 547-557. doi: 10.15886/j.cnki.rdswxb.20240055
    参考文献 (56)

    目录

      /

      返回文章
      返回