留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

南海4种共生虫黄藻株系的分离培养和生理特性

布海陆 王珺 周智

布海陆, 王珺, 周智. 南海4种共生虫黄藻株系的分离培养和生理特性[J]. 热带生物学报, 2024, 15(4): 460-470. doi: 10.15886/j.cnki.rdswxb.20230117
引用本文: 布海陆, 王珺, 周智. 南海4种共生虫黄藻株系的分离培养和生理特性[J]. 热带生物学报, 2024, 15(4): 460-470. doi: 10.15886/j.cnki.rdswxb.20230117
BU Hailu, WANG Jun, ZHOU Zhi. Isolated culture and physiological characteristics of four symbiotic Symbiodiniaceae strains from South China Sea[J]. Journal of Tropical Biology, 2024, 15(4): 460-470. doi: 10.15886/j.cnki.rdswxb.20230117
Citation: BU Hailu, WANG Jun, ZHOU Zhi. Isolated culture and physiological characteristics of four symbiotic Symbiodiniaceae strains from South China Sea[J]. Journal of Tropical Biology, 2024, 15(4): 460-470. doi: 10.15886/j.cnki.rdswxb.20230117

南海4种共生虫黄藻株系的分离培养和生理特性

doi: 10.15886/j.cnki.rdswxb.20230117
基金项目: 

42161144006)

国家自然科学基金(42076145

详细信息
    第一作者:

    布海陆(1999-),男,海南大学海洋科学与工程学院2021级硕士研究生。E-mail:919306863@qq.com

    通信作者:

    王珺(1972-),女,硕士,高级实验师。研究方向:水产养殖学。E-mail:72206wj@163.com

    周智(1983-),男,博士,研究员。研究方向:海洋生物学。E-mail:zhouzhi@hainanu.edu.cn

  • 中图分类号: Q178.53

Isolated culture and physiological characteristics of four symbiotic Symbiodiniaceae strains from South China Sea

  • 摘要: 为了探究不同虫黄藻的种间差异及其生理特点,从南海的多种刺胞生物中分离获取4株单克隆虫黄藻株系,并围绕其系统发育学、形态学及多种生理学特征展开了一系列研究。结果表明,4株虫黄藻分别归为Symbiodinium属(A3型,编号:HNUA3-1)、Breviolum属(B1型,编号:HNUB1-1)、Cladocopium属(C1型,编号:HNUC1-1)、Durusdinium属(D1型,编号:HNUD1-1)。光学显微镜及透射电子显微镜观察均显示4种藻株在形态学特征上具有很高的相似性,但比生长速率存在显著性差异,反映出虫黄藻种间的特异性生长特征。其中,藻株Breviolum sp. HNUB1-1比生长速率最高,其细胞密度在第3、5、7天均显著高于其他3种藻株(P <0.05),而藻株Symbiodinium sp. HNUA3-1的比生长速率次之,藻株Cladocopium sp. HNUC1-1与Durusdinium sp. HNUD1-1的比生长速率最低,7 d内的两者细胞密度无显著差异。此外,不同藻株之间的最大光量子产量(Fv/Fm)也存在物种特异性,同等条件下,藻株Durusdinium sp. HNUD1-1的Fv/Fm远低于其他3种藻株,反映了其潜在耐热性的光合生理特征。本研究为丰富我国南海虫黄藻种质资源,明确虫黄藻种间差异及特征提供理论依据,可为我国南海珊瑚礁生态系统的恢复提供基础数据支持。
  • [1] MUSCATINE L, PORTER J W. Reef corals:mutualistic symbioses adapted to nutrient-poor environments[J]. BioScience, 1977, 27(7):454-460.
    [2] POCHON X, GATES R D. A new Symbiodinium clade(Dinophyceae)from soritid foraminifera in Hawai’i[J].Molecular Phylogenetics and Evolution, 2010, 56:492-497.
    [3] LAJEUNESSE T C, PARKINSON J E, GABRIELSON P W, et al. Systematic revision of Symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts[J]. Current Biology, 2018, 28(16):2570-2580.
    [4] NITSCHKE M R, CRAVEIRO S C, BRANDÃO C, et al.Description of freudenthalidium gen. nov. and halluxium gen. nov. to formally recognize clades Fr3 and H as Genera in the family Symbiodiniaceae(Dinophyceae)[J]. Journal of Phycology, 2020, 56(4):923-940.
    [5] POCHON X, LAJEUNESSE T C. Miliolidium n. gen, a new symbiodiniacean genus whose members associate with soritid foraminifera or are free-living[J]. The Journal of Eukaryotic Microbiology, 2021:e12856.
    [6] FISHER P L, MALME M K, DOVE S. The effect of temperature stress on coral-Symbiodinium associations containing distinct symbiont types[J]. Coral Reefs, 2012,31(2):473-485.
    [7] MULLER-PARKER G, D’ELIA C F, COOK C B. Interactions between corals and their symbiotic algae[J]. Coral reefs in the Anthropocene, 2015:99-116.
    [8] FALKOWSKI P G, DUBINSKY Z, MUSCATINE L, et al.Light and the bioenergetics of a symbiotic coral[J]. BioScience, 1984, 34(11):705-709.
    [9] GONZÁLEZ-PECH R A, BHATTACHARYA D, RAGAN M A, et al. Genome evolution of coral reef symbionts as intracellular residents[J]. Trends in Ecology&Evolution,2019, 34(9):799-806.
    [10] ROBISON J D, WARNER M E. Differential impacts of photoacclimation and thermal stress on the photobiology of four different phylotypes of Symbiodinium(Pyrrhophyta)[J]. Journal of Phycology, 2006, 42(3):568-579.
    [11] SUGGETT D J, WARNER M E, SMITH D J, et al. Photosynthesis and production of hydrogen peroxide by Symbiodinium(Pyrrhophyta)phylotypes with different thermal tolerances[J]. Journal of Phycology, 2008, 44(4):948-956.
    [12] MCBRIDE B B, MULLER-PARKER G, JAKOBSEN H H. Low thermal limit of growth rate of Symbiodinium californium(Dinophyta)in culture may restrict the symbiont to southern populations of its host anemones(Anthopleura spp.; Anthozoa, Cnidaria)[J]. Journal of Phycology, 2009, 45(4):855-863.
    [13] MCGINTY E S, PIECZONKA J, MYDLARZ L D. Variations in reactive oxygen release and antioxidant activity in multiple Symbiodinium types in response to elevated temperature[J]. Microbial Ecology, 2012, 64(4):1000-1007.
    [14] GILBERT C, SCHAACK S, PACE II J K, et al. A role for host-parasite interactions in the horizontal transfer of transposons across phyla[J]. Nature, 2010, 464:1347-1350.
    [15] BAKER A C, STARGER C J, MCCLANAHAN T R,et al. Corals’ adaptive response to climate change[J].Nature, 2004, 430:741.
    [16] THORNHILL D J, KEMP D W, BRUNS B U, et al. Correspondence between cold tolerance and temperate biogeography in a western Atlantic Symbiodinium(dinophyta)lineage[J]. Journal of Phycology, 2008, 44(5):1126-1135.
    [17] VOOLSTRA C R, VALENZUELA J J, TURKARSLAN S,et al. Contrasting heat stress response patterns of coral holobionts across the Red Sea suggest distinct mechanisms of thermal tolerance[J]. Molecular Ecology, 2021,30(18):4466-4480.
    [18] ISHIKURA M, HAGIWARA K, TAKISHITA K, et al.Isolation of new Symbiodinium strains from tridacnid giant clam(Tridacna crocea)and sea slug(Pteraeolidia ianthina)using culture medium containing giant clam tissue homogenate[J]. Marine Biotechnology, 2004, 6(4):378-385.
    [19] FITT W K. Chemosensory responses of the symbiotic dinoflagellate Symbiodinium microadriaticum(Dinophyceae)[J]. Journal of Phycology, 1985, 21(1):62-67.
    [20] KRUEGER T, GATES R D. Cultivating endosymbionts-host environmental mimics support the survival of Symbiodinium C15 ex hospite[J]. Journal of Experimental Marine Biology and Ecology, 2012, 413:169-176.
    [21] BUERGER P, ALVAREZ-ROA C, COPPIN C W, et al.Heat-evolved microalgal symbionts increase coral bleaching tolerance[J]. Science Advances, 2020, 6(20):eaba2498.
    [22] 张乔民,余克服,施祺,等.中国珊瑚礁分布和资源特点[C] //第二届全国海洋高新技术产业化论坛论文集.北京:中国高科技产业化研究会, 2015:176-178.
    [23] 余克服.南海珊瑚礁及其对全新世环境变化的记录与响应[J].中国科学:地球科学, 2012, 42(8):1160-1172.
    [24] LIAO Z, YU K, CHEN B, et al. Spatial distribution of benthic algae in the South China Sea:responses to gradually changing environmental factors and ecological impacts on coral communities[J]. Diversity and Distributions, 2021, 27(5):929-943.
    [25] TONG H, CAI L, ZHOU G, et al. Temperature shapes coral-algal symbiosis in the South China Sea[J]. Scientific Reports, 2017, 7:40118.
    [26] XIANG T, HAMBLETON E A, DENOFRIO J C, et al.Isolation of clonal axenic strains of the symbiotic dinoflagellate Symbiodinium and their growth and host specificity[J]. Journal of Phycology, 2013, 49(3):447-458.
    [27] XIE J, CHEN Y, CAI G, et al. Tree Visualization By One Table(tvBOT):a web application for visualizing, modifying and annotating phylogenetic trees[J]. Nucleic Acids Research, 2023, 51(W1):W587-W592.
    [28] SAMPAYO E M, RIDGWAY T, BONGAERTS P, et al.Bleaching susceptibility and mortality of corals are determined by fine-scale differences in symbiont type[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(30):10444-10449.
    [29] GLYNN V M, VOLLMER S V, KLINE D I, et al. Environmental and geographical factors structure cauliflower coral's algal symbioses across the Indo-Pacific[J]. Journal of Biogeography, 2023, 50(4):669-684.
    [30] KLEPAC C N, EATON K R, PETRIK C G, et al. Symbiont composition and coral genotype determines massive coral species performance under end-of-century climate scenarios[J]. Frontiers in Marine Science, 2023, 10:1026426.
    [31] TURNHAM K E, WHAM D C, SAMPAYO E, et al.Mutualistic microalgae co-diversify with reef corals that acquire symbionts during egg development[J]. The ISME Journal, 2021, 15:3271-3285.
    [32] 覃良云,许勇前,陈金妮,等.造礁石珊瑚共生虫黄藻离体培养方法的优化[J].微生物学报, 2023, 63(4):1658-1671.
    [33] WANG J, CHEN J, WANG S, et al. Monoclonal culture and characterization of Symbiodiniaceae C1 strain from the scleractinian coral Galaxea fascicularis[J]. Frontiers in Physiology, 2021, 11:1879.
    [34] ZHOU G, CAI L, LI Y, et al. Temperature-driven local acclimatization of Symbiodnium hosted by the coral Galaxea fascicularis at Hainan Island, China[J]. Frontiers in Microbiology, 2017, 8:2487.
    [35] JEONG H J, LEE S Y, KANG N S, et al. Genetics and morphology characterize the dinoflagellate Symbiodinium voratum, n. sp.,(Dinophyceae)as the sole representative of Symbiodinium Clade E[J]. The Journal of Eukaryotic Microbiology, 2014, 61(1):75-94.
    [36] BLANK R J, TRENCH R K. Speciation and symbiotic dinoflagellates[J]. Science, 1985, 229(4714):656-658.
    [37] SUGGETT D J, GOYEN S, EVENHUIS C, et al. Functional diversity of photobiological traits within the genus Symbiodinium appears to be governed by the interaction of cell size with cladal designation[J]. The New Phytologist, 2015, 208(2):370-381.
    [38] SUGGETT D J, MOORE C M, HICKMAN A E, et al.Interpretation of fast repetition rate(FRR)fluorescence:signatures of phytoplankton community structure versus physiological state[J]. Marine Ecology Progress Series,2009, 376:1-19.
    [39] WU Y, CAMPBELL D A, IRWIN A J, et al. Ocean acidification enhances the growth rate of larger diatoms[J].Limnology and Oceanography, 2014, 59(3):1027-1034.
    [40] LEE R E. Phycology[M]. Cambridge:Cambridge university press, 2018.
    [41] 傅维洁.关于微生物比生长速率和指数生长期的讨论[J].微生物学通报, 1992, 19(2):114-115.
    [42] LITTLE A F, VAN OPPEN M J H, WILLIS B L. Flexibility in algal endosymbioses shapes growth in reef corals[J]. Science, 2004, 304(5676):1492-1494.
    [43] JONES A, BERKELMANS R. Potential costs of acclimatization to a warmer climate:growth of a reef coral with heat tolerant vs. sensitive symbiont types[J]. PLoS One,2010, 5(5):e10437.
    [44] WANG C, ZHENG X, KVITT H, et al. Lineage-specific symbionts mediate differential coral responses to thermal stress[J]. Microbiome, 2023, 11(1):211.
    [45] 汪亚俊,孙明哲,李爱芬,等.不同氮素水平对产油尖状栅藻生长及光合生理的影响[J].中国生物工程杂志, 2014, 34(12):51-58.
    [46] KROMKAMP J C, FORSTER R M. The use of variable fluorescence measurements in aquatic ecosystems:differences between multiple and single turnover measuring protocols and suggested terminology[J]. European Journal of Phycology, 2003, 38(2):103-112.
    [47] ROWAN R. Thermal adaptation in reef coral symbionts[J].Nature, 2004, 430:742.
  • [1] 邢芸, 占昭宏, 吴可建, 魏炳峥, 陶均.  脯氨酸亚氨基肽酶调控野油菜黄单胞菌的致病力 . 热带生物学报, 2025, 16(3): 406-414. doi: 10.15886/j.cnki.rdswxb.20240079
    [2] 臧文帅, 谌昕伟, 卢东莹, 杨琦, 杨健飞, 李慈云, 李若彤, 杨静, 牛晓磊.  灰黄青霉CF3对木薯促生作用机理的初步研究 . 热带生物学报, 2025, 16(): 1-8. doi: 10.15886/j.cnki.rdswxb.20250045
    [3] 钟宇晴, 焦斌, 吕宝乾, 骆焱平, 卢辉, 唐继洪, 张起恺.  虫螨腈种子包膜处理防治草地贪夜蛾效果评价 . 热带生物学报, 2025, 16(2): 236-242. doi: 10.15886/j.cnki.rdswxb.20240129
    [4] 何泽华, 李加慧, 林晓丹.  基于DNA条形码的棕榈裸蠓雄虫的发现与描述 . 热带生物学报, 2024, 15(1): 94-99. doi: 10.15886/j.cnki.rdswxb.20230012
    [5] 孙安俯, 潘帅, 肖娟, 黄海, 郭志强.  黄鳍金枪鱼重金属富集特征及食品安全评估 . 热带生物学报, 2023, 14(1): 25-31. doi: 10.15886/j.cnki.rdswxb.2023.01.002
    [6] 赵文宇, 张洁, 郑世祥, 汪心雨, 苏小婷, 范咏梅.  手性茚虫威对家蚕的急性毒性效应 . 热带生物学报, 2023, 14(5): 514-520. doi: 10.15886/j.cnki.rdswxb.20220035
    [7] 米多, 陈雨, 邢芸, 陈银华, 陶均, 李春霞.  MutL调控水稻黄单胞菌的致病力 . 热带生物学报, 2023, 14(2): 234-239. doi: 10.15886/j.cnki.rdswxb.2023.02.014
    [8] 王露露, 王辉, 熊焰, 周霞, 王军, 王健华, 伍苏然.  虫生真菌防治农作物害虫的研究进展 . 热带生物学报, 2022, 13(3): 309-314. doi: 10.15886/j.cnki.rdswxb.2022.03.015
    [9] 周诗正, 陈琳, 颜洪, 傅鹏程.  基于深度神经网络的芯片上活体虫黄藻检测 . 热带生物学报, 2022, 13(5): 451-456. doi: 10.15886/j.cnki.rdswxb.2022.05.004
    [10] 陈帅, 裴跃斌, 王康欣, 周海龙, 李元超.  苯并[a]芘胁迫对3种石珊瑚虫黄藻密度及叶绿素a含量的影响 . 热带生物学报, 2021, 12(2): 147-153. doi: 10.15886/j.cnki.rdswxb.2021.02.002
    [11] 张钰, 林茂娟, 李婷, 李春霞, 陈银华, 陶均.  转录调节因子VrhR负调控野油菜黄单胞菌的致病力 . 热带生物学报, 2020, 11(2): 217-222, 237. doi: 10.15886/j.cnki.rdswxb.2020.02.012
    [12] 冯翠莲, 万玥, 赵婷婷, 王俊刚, 冯小艳, 张树珍.  抗虫转基因甘蔗对土壤酶活性的影响 . 热带生物学报, 2020, 11(1): 1-6. doi: 10.15886/j.cnki.rdswxb.2020.01.001
    [13] 张晓凯, 刘剑南, 徐成滨, 张业扬, 孙明凯, 范咏梅.  氟硅唑对丰年虫急性毒性及氧化应激的影响 . 热带生物学报, 2019, 10(2): 140-144. doi: 10.15886/j.cnki.rdswxb.2019.02.007
    [14] 张唯伟, 董怡, 张传清, 朱国念, 刘亚慧.  稻田常用农药对螟黄赤眼蜂的影响 . 热带生物学报, 2019, 10(3): 283-287. doi: 10.15886/j.cnki.rdswxb.2019.03.015
    [15] 蔡永凤, 肖彩云, 吴帅, 郑茂彬, 李明, 李荣玉.  氟啶虫胺腈与茚虫威对褐飞虱的协同作用 . 热带生物学报, 2019, 10(3): 278-282. doi: 10.15886/j.cnki.rdswxb.2019.03.014
    [16] 徐成滨, 王宇心, 孔伟浩, 张晓凯, 刘诗颖, 范咏梅.  溴氰虫酰胺对羊角月牙藻的急性毒性效应 . 热带生物学报, 2019, 10(2): 135-139,164. doi: 10.15886/j.cnki.rdswxb.2019.02.006
    [17] 王宇光, 王军, 杨锦玲, 梅文莉, 戴好富.  白木香天然虫漏和人工砍伤所产沉香的GC-MS分析 . 热带生物学报, 2017, 8(4): 459-465. doi: 10.15886/j.cnki.rdswxb.2017.04.014
    [18] 邹俊, 戎伟, 李慧萍, 林道哲, 何朝族.  野油菜黄单胞菌的HpaA基因功能 . 热带生物学报, 2015, 6(2): 119-126. doi: 10.15886/j.cnki.rdswxb.2015.02.003
    [19] 刘鑫鑫, 朱军, 黄惠琴, 刘敏, 邹潇潇, 鲍时翔.  海南2种马尾藻的分类鉴定 . 热带生物学报, 2014, 5(4): 357-362,367. doi: 10.15886/j.cnki.rdswxb.2014.04.009
    [20] 王珺, 邢诒炫, 陈国华, 刘志媛, 李洪武, 王爱雯.  不同生态因子对直链藻生长的影响 . 热带生物学报, 2010, 1(3): 220-223,227. doi: 10.15886/j.cnki.rdswxb.2010.03.018
  • 加载中
  • 计量
    • 文章访问数:  39
    • HTML全文浏览量:  1
    • PDF下载量:  1
    • 被引次数: 0
    出版历程
    • 收稿日期:  2023-10-16
    • 修回日期:  2023-11-19
    • 刊出日期:  2024-07-25

    南海4种共生虫黄藻株系的分离培养和生理特性

    doi: 10.15886/j.cnki.rdswxb.20230117
      基金项目:

      42161144006)

      国家自然科学基金(42076145

      作者简介:

      布海陆(1999-),男,海南大学海洋科学与工程学院2021级硕士研究生。E-mail:919306863@qq.com

      通讯作者: 王珺(1972-),女,硕士,高级实验师。研究方向:水产养殖学。E-mail:72206wj@163.com; 周智(1983-),男,博士,研究员。研究方向:海洋生物学。E-mail:zhouzhi@hainanu.edu.cn
    • 中图分类号: Q178.53

    摘要: 为了探究不同虫黄藻的种间差异及其生理特点,从南海的多种刺胞生物中分离获取4株单克隆虫黄藻株系,并围绕其系统发育学、形态学及多种生理学特征展开了一系列研究。结果表明,4株虫黄藻分别归为Symbiodinium属(A3型,编号:HNUA3-1)、Breviolum属(B1型,编号:HNUB1-1)、Cladocopium属(C1型,编号:HNUC1-1)、Durusdinium属(D1型,编号:HNUD1-1)。光学显微镜及透射电子显微镜观察均显示4种藻株在形态学特征上具有很高的相似性,但比生长速率存在显著性差异,反映出虫黄藻种间的特异性生长特征。其中,藻株Breviolum sp. HNUB1-1比生长速率最高,其细胞密度在第3、5、7天均显著高于其他3种藻株(P <0.05),而藻株Symbiodinium sp. HNUA3-1的比生长速率次之,藻株Cladocopium sp. HNUC1-1与Durusdinium sp. HNUD1-1的比生长速率最低,7 d内的两者细胞密度无显著差异。此外,不同藻株之间的最大光量子产量(Fv/Fm)也存在物种特异性,同等条件下,藻株Durusdinium sp. HNUD1-1的Fv/Fm远低于其他3种藻株,反映了其潜在耐热性的光合生理特征。本研究为丰富我国南海虫黄藻种质资源,明确虫黄藻种间差异及特征提供理论依据,可为我国南海珊瑚礁生态系统的恢复提供基础数据支持。

    English Abstract

    布海陆, 王珺, 周智. 南海4种共生虫黄藻株系的分离培养和生理特性[J]. 热带生物学报, 2024, 15(4): 460-470. doi: 10.15886/j.cnki.rdswxb.20230117
    引用本文: 布海陆, 王珺, 周智. 南海4种共生虫黄藻株系的分离培养和生理特性[J]. 热带生物学报, 2024, 15(4): 460-470. doi: 10.15886/j.cnki.rdswxb.20230117
    BU Hailu, WANG Jun, ZHOU Zhi. Isolated culture and physiological characteristics of four symbiotic Symbiodiniaceae strains from South China Sea[J]. Journal of Tropical Biology, 2024, 15(4): 460-470. doi: 10.15886/j.cnki.rdswxb.20230117
    Citation: BU Hailu, WANG Jun, ZHOU Zhi. Isolated culture and physiological characteristics of four symbiotic Symbiodiniaceae strains from South China Sea[J]. Journal of Tropical Biology, 2024, 15(4): 460-470. doi: 10.15886/j.cnki.rdswxb.20230117
    参考文献 (47)

    目录

      /

      返回文章
      返回