-
番茄(Solanum lycopersicum)起源于南美洲的安第斯地区,被认为是最主要的蔬菜作物,为人类的膳食营养作出了巨大贡献[1-2]。食用番茄可以预防缓解贫血,治疗消化性溃疡以及高血压[3-4]。此外,番茄作为一种重要的双子叶模式植物,代表了包括马铃薯、胡椒和茄子在内所有茄科作物的生物研究和遗传改良的模型。番茄由醋栗番茄(Solanum pimpinellifolium, PIM)驯化为樱桃番茄(Slycopersicum var. cerasiforme, CER),进一步经过人工选择改良为现代大果番茄(Solanum lycopersicum, BIG)[5-6]。番茄及其野生近缘植物起源于南美洲的安第斯地区,16世纪后在全世界各地进行传播,随后的迁移和持续的育种选择减少了番茄的遗传多样性。
黄酮类化合物作为一类重要的植物代谢物,是以2-苯基色原酮为母核具有清除自由基、抗氧化、抗衰老、促进免疫调节、抗肿瘤及预防慢性疾病的作用。黄酮类化合物广泛分布于芹菜、甜椒、绿叶蔬菜、柑橘和苹果等水果蔬菜中[7-8]。木犀草素作为一种重要的黄酮类化合物,具有抗炎、抗肥胖和抗非酒精性脂肪肝等多种生物学功能[9-10]。研究发现,木犀草素中的酚羟基可以提供氢原子,与细胞产生的过量自由基发生反应形成醌类游离基中间体,并在酚环共轭作用下趋于稳定,阻断氧化链反应的传递,防止过氧化反应,避免ROS对细胞的损害[11-13]。Choi等[14]研究了木犀草素对2,2-二苯基-1-吡啶并肼基(DPPH)、一氧化氮(NO)、过氧亚硝酸盐(ONOO−)及活性氧(ROS)的清除能力,结果表明,木犀草素对ROS的清除能力优于异荭草苷、荭草苷等类似物。
糖基转移酶(glycosyltransferase,GT)在植物中广泛存在,可催化多种代谢物的糖基化反应生成寡糖、多糖和糖复合物。这些结构多样性的糖分子参与和介导从结构、存储到信号传递等生命活动。糖基转移酶依据氨基酸序列的相似程度、反应机制、保守序列以及糖苷键的立体化学性等总共被划分为 114 个家族[15]。人们已在许多植物中发现大量的糖基转移酶,如胡萝卜(Daucus carota var. sativa)的花青素3-O-半乳糖基转移酶1(Daucus carotacyanidin 3-O-galactosyltransferase 1,DcUCGalT1)、芹菜(Apium graveolens)的花青素3-O-半乳糖基转移酶1(Apium graveolens cyanidin 3-O-galactosyltransferase 1,AgUCGalT1)和中国金莲花(Trollius chinensis)的黄酮C-糖基转移酶(Trollius chinensis 8-C-glucosyltransferase,TcCGT1)等,这些物质经过糖基化修饰后可能表现出与骨架不同的生理活性[16-18]。然而到目前为止,番茄中修饰木犀草素的糖基转移酶鲜有报道,因此探究木犀草素糖苷在番茄中的自然变异与代谢机制,对后续解析木犀草素途径和品种选育具有重要意义。
Functional study and natural variation analysis of glycosyltransferase gene SlUGT75C1-like in tomato
-
摘要: 为了解析番茄(Solanum lycopersicum)群体中与木犀草素葡萄糖苷含量相关的自然变异,以426份番茄为材料,进行了基于代谢组学的全基因组关联分析(metabolome Genome-Wide Association Study,mGWAS),发现番茄SlUGT75C1-like基因下游的存在一个与番茄木犀草素-7-O-葡萄糖苷含量紧密关联的突变位点。进一步在3个亚群的番茄群体中,进行全基因组核苷酸多态性计算,发现SlUGT75C1-like所处的区域在不同亚群中存在明显的差异;进一步分析代谢组和转录组数据相关性发现SlUGT75C1-like的转录水平与木犀草素-7-O-葡萄糖苷的相对含量存在极显著的正相关关系,最后,通过蛋白原核表达获得SlUGT75C1-like融合蛋白并利用体外酶活试验证明该基因催化木犀草素的糖基化反应。研究结果说明,番茄SlUGT75C1-like基因的自然变异造成了木犀草素-7-O-葡萄糖苷在番茄群体中的含量差异,mGWAS在识别新的植物代谢基因簇方面具有较大的优势和巨大潜力,在为植物精细育种提供分子基础方面具有重要的应用价值。Abstract: In order to analyze the natural variation related to luteolin glucoside content in tomato population, 426 tomato samples were used as materials to performed metabolome genome-wide association study (mGWAS) analysis, and found that there was a mutation site downstream of tomato SlUGT75C1-like gene which was closely related to the content of luteolin-7-O-glucoside. Furthermore, the nucleotide polymorphism of the whole genome was calculated in three subgroups of tomato population, and it was found that the region where SlUGT75C1-like was located was obviously different among different subgroups. Further analysis of the correlation between metabolomics and transcriptome data showed that the transcription level of SlUGT75C1-like was positively correlated with the relative content of luteolin-7-O-glucoside. Finally, the fusion protein of SlUGT75C1-like was obtained by prokaryotic expression of the protein, and the enzyme activity test in vitro showed that SlUGT75C1-like catalyzed the glycosylation of luteolin. The results indicated that the natural variation of SlUGT75C1-like gene causes the content difference of luteolin-7-O-glucoside in tomato population. mGWAS has a large advantage and great potential in identifying new plant metabolic gene clusters, and is important in providing the molecular basis for fine plant breeding.
-
Key words:
- tomato /
- genome-wide association study /
- luteolin /
- transcriptome /
- metabolomics
-
-
[1] 王守创. 番茄育种过程中代谢组的变化及遗传基础研究[D]. 武汉: 华中农业大学. 2018. [2] ZHU Y, SIMS C A, KLEE H J, et al. Sensory and flavor characteristics of tomato juice from garden gem and roma tomatoes with comparison to commercial tomato juice[J]. Journal of Food Science, 2018, 83(1): 153 − 161. doi: 10.1111/1750-3841.13980 [3] TOOR R K, SAVAGE G P. Changes in major antioxidant components of tomatoes during post-harvest storage[J]. Food Chemistry, 2006, 99(4): 724 − 727. doi: 10.1016/j.foodchem.2005.08.049 [4] SORREQUIETA A, FERRARO G. , BOGGIO S B, et al. Free amino acid production during tomato fruit ripening: a focus on L-glutamate[J]. Amino Acids, 2010, 38(5): 1523 − 1532. doi: 10.1007/s00726-009-0373-1 [5] LI Y, CHEN Y, ZHOU L, et al. MicroTom metabolic network: rewiring tomato metabolic regulatory network throughout the growth cycle[J]. Molecular Plant, 2020, 13(8): 1203 − 1218. doi: 10.1016/j.molp.2020.06.005 [6] ZHU G, WANG S, HUANG Z, et al. Rewiring of the fruit metabolome in tomato breeding[J]. Cell, 2018, 172(1/2): 249 − 261. doi: 10.1016/j.cell.2017.12.019 [7] CROZIER A, DEL RIO D, CLIFFORD M N. Bioavailability of dietary flavonoids and phenolic compounds[J]. Molecular Aspects of Medicine, 2010, 31(6): 446 − 467. doi: 10.1016/j.mam.2010.09.007 [8] 陈璇. 黄酮类化合物(槲皮素、木犀草素)与类胡萝卜素(番茄红素、叶黄素)协同抗氧化作用及分子机制[D].南昌: 南昌大学,2022. [9] 詹鑫, 徐帆, 祝钧, 等. 木犀草素的生理作用及制剂研究进展[J]. 日用化学工业(中英文), 2023, 53(4): 437 − 444. [10] CALABRESE E J, AGATHOKLEOUS E, KAPOOR R, et al. Luteolin and hormesis[J]. Mechanisms of Ageing and Development, 2021, 199: 111559. doi: 10.1016/j.mad.2021.111559 [11] 王璐. 花生果实荚壳中木犀草素的提取纯化、纳米粒制备及其稳定Pickering乳液的设计与研究[D]. 哈尔滨: 东北林业大学, 2020. [12] XU T, WANG C, JIANG S, et al. Glycosylation of luteolin in hydrophilic organic solvents and structure–antioxidant relationships of luteolin glycosides[J]. RSC Advances, 2022, 12(28): 18232 − 18237. doi: 10.1039/D2RA03300C [13] APAK R, ÖZYÜREK M, GÜÇLÜ K, et al. Antioxidant activity/capacity measurement. 2. hydrogen atom transfer (HAT)-based, mixed-mode (electron transfer (ET)/HAT), and lipid peroxidation assays[J]. Journal of Agricultural and Food Chemistry, 2016, 64(5): 1028 − 1045. doi: 10.1021/acs.jafc.5b04743 [14] CHOI M Y, SONG H S, HUR H S, et al. Whitening activity of luteolin related to the inhibition of cAMP pathway in α-MSH-stimulated B16 melanoma cells[J]. Archives of Pharmacal Research, 2008, 31(9): 1166 − 1171. doi: 10.1007/s12272-001-1284-4 [15] RAHIMI S, KIM J, MIJAKOVIC I, et al. Triterpenoid-biosynthetic UDP-glycosyltransferases from plants[J]. Biotechnology Advances, 2019, 37(7): 107394. doi: 10.1016/j.biotechadv.2019.04.016 [16] FENG K, XU Z S, LIU J X, et al. Isolation, purification, and characterization of AgUCGalT1, a galactosyltransferase involved in anthocyanin galactosylation in purple celery (Apium graveolens L.)[J]. Planta, 2018, 247(6): 1363 − 1375. doi: 10.1007/s00425-018-2870-5 [17] XU Z, MA J, WANG F, et al. Identification and characterization of DcUCGalT1, a galactosyltransferase responsible for anthocyanin galactosylation in purple carrot (Daucus carota L.) taproots[J]. Scientific Reports, 2016, 6(1): 27356. doi: 10.1038/srep27356 [18] HE J B, ZHAO P, HU Z, et al. Molecular and structural characterization of a promiscuous C-glycosyltransferase from trollius chinensis[J]. Angewandte Chemie International Edition, 2019, 58(33): 11513 − 11520. doi: 10.1002/anie.201905505 [19] KANG H M, SUL J H, SERVICE S K, et al. Variance component model to account for sample structure in genome-wide association studies[J]. Nature Genetics, 2010, 42(4): 348 − 354. doi: 10.1038/ng.548 [20] 毛梦迪. 番茄转录因子SlERF. D6在调控茄碱代谢和果实成熟中的功能研究[D].海口: 海南大学. 2022. [21] FANG C, LUO J. Metabolic GWAS-based dissection of genetic bases underlying the diversity of plant metabolism[J]. The Plant Journal, 2019, 97(1): 91 − 100. doi: 10.1111/tpj.14097 [22] KLEIN R J, ZEISS C, CHEW E Y, et al. Complement factor H polymorphism in age-related macular degeneration[J]. Science, 2005, 308(5720): 385 − 389. doi: 10.1126/science.1109557 [23] SHANG Y, MA Y, ZHOU Y, et al. Biosynthesis, regulation, and domestication of bitterness in cucumber[J]. Science, 2014, 346(6213): 1084 − 1088. doi: 10.1126/science.1259215 [24] CHEN W, GAO Y, XIE W, et al. Genome-wide association analyses provide genetic and biochemical insights into natural variation in rice metabolism[J]. Nature Genetics, 2014, 46(7): 714 − 721. doi: 10.1038/ng.3007 [25] PENG M, SHAHZAD R, GUL A, et al. Differentially evolved glucosyltransferases determine natural variation of rice flavone accumulation and UV-tolerance[J]. Nature Communications, 2017, 8(1): 1975. doi: 10.1038/s41467-017-02168-x [26] TANAKA Y, SASAKI N , OHMIYA A. Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids[J]. The Plant Journal, 2008, 54(4): 733 − 749. doi: 10.1111/j.1365-313X.2008.03447.x [27] PANG Y, PEEL G J, SHARMA S B, et al. A transcript profiling approach reveals an epicatechin-specific glucosyltransferase expressed in the seed coat of Medicago truncatula[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(37): 14210 − 14215. doi: 10.1073/pnas.0805954105 [28] ZHAO J AND DIXON R A. transporters facilitate vacuolar uptake of epicatechin 3'-O-glucoside for proanthocyanidin biosynthesis inMedicago truncatula and Arabidopsis[J]. The Plant Cell, 2009, 21(8): 2323 − 2340. doi: 10.1105/tpc.109.067819 [29] FRYDMAN A, WEISSHAUS O, BAR-PELED M, et al. Citrus fruit bitter flavors: isolation and functional characterization of the gene Cm1, 2RhaT encoding a 1, 2 rhamnosyltransferase, a key enzyme in the biosynthesis of the bitter flavonoids of citrus[J]. The Plant Journal, 2004, 40(1): 88 − 100. doi: 10.1111/j.1365-313X.2004.02193.x [30] SCHARBERT S , HOFMANN T. Molecular definition of black tea taste by means of quantitative studies, taste reconstitution, and omission experiments[J]. Journal of Agricultural and Food Chemistry, 2005, 53(13): 5377 − 5384. doi: 10.1021/jf050294d [31] LIU C W, LIN H W, YANG D J, et al. Luteolin inhibits viral-induced inflammatory response in RAW264.7 cells via suppression of STAT1/3 dependent NF-κB and activation of HO-1[J]. Free Radical Biology and Medicine, 2016, 95: 180 − 189. doi: 10.1016/j.freeradbiomed.2016.03.019