[1] |
王守创. 番茄育种过程中代谢组的变化及遗传基础研究[D]. 武汉: 华中农业大学. 2018. |
[2] |
ZHU Y, SIMS C A, KLEE H J, et al. Sensory and flavor characteristics of tomato juice from garden gem and roma tomatoes with comparison to commercial tomato juice[J]. Journal of Food Science, 2018, 83(1): 153 − 161. doi: 10.1111/1750-3841.13980 |
[3] |
TOOR R K, SAVAGE G P. Changes in major antioxidant components of tomatoes during post-harvest storage[J]. Food Chemistry, 2006, 99(4): 724 − 727. doi: 10.1016/j.foodchem.2005.08.049 |
[4] |
SORREQUIETA A, FERRARO G. , BOGGIO S B, et al. Free amino acid production during tomato fruit ripening: a focus on L-glutamate[J]. Amino Acids, 2010, 38(5): 1523 − 1532. doi: 10.1007/s00726-009-0373-1 |
[5] |
LI Y, CHEN Y, ZHOU L, et al. MicroTom metabolic network: rewiring tomato metabolic regulatory network throughout the growth cycle[J]. Molecular Plant, 2020, 13(8): 1203 − 1218. doi: 10.1016/j.molp.2020.06.005 |
[6] |
ZHU G, WANG S, HUANG Z, et al. Rewiring of the fruit metabolome in tomato breeding[J]. Cell, 2018, 172(1/2): 249 − 261. doi: 10.1016/j.cell.2017.12.019 |
[7] |
CROZIER A, DEL RIO D, CLIFFORD M N. Bioavailability of dietary flavonoids and phenolic compounds[J]. Molecular Aspects of Medicine, 2010, 31(6): 446 − 467. doi: 10.1016/j.mam.2010.09.007 |
[8] |
陈璇. 黄酮类化合物(槲皮素、木犀草素)与类胡萝卜素(番茄红素、叶黄素)协同抗氧化作用及分子机制[D].南昌: 南昌大学,2022. |
[9] |
詹鑫, 徐帆, 祝钧, 等. 木犀草素的生理作用及制剂研究进展[J]. 日用化学工业(中英文), 2023, 53(4): 437 − 444. |
[10] |
CALABRESE E J, AGATHOKLEOUS E, KAPOOR R, et al. Luteolin and hormesis[J]. Mechanisms of Ageing and Development, 2021, 199: 111559. doi: 10.1016/j.mad.2021.111559 |
[11] |
王璐. 花生果实荚壳中木犀草素的提取纯化、纳米粒制备及其稳定Pickering乳液的设计与研究[D]. 哈尔滨: 东北林业大学, 2020. |
[12] |
XU T, WANG C, JIANG S, et al. Glycosylation of luteolin in hydrophilic organic solvents and structure–antioxidant relationships of luteolin glycosides[J]. RSC Advances, 2022, 12(28): 18232 − 18237. doi: 10.1039/D2RA03300C |
[13] |
APAK R, ÖZYÜREK M, GÜÇLÜ K, et al. Antioxidant activity/capacity measurement. 2. hydrogen atom transfer (HAT)-based, mixed-mode (electron transfer (ET)/HAT), and lipid peroxidation assays[J]. Journal of Agricultural and Food Chemistry, 2016, 64(5): 1028 − 1045. doi: 10.1021/acs.jafc.5b04743 |
[14] |
CHOI M Y, SONG H S, HUR H S, et al. Whitening activity of luteolin related to the inhibition of cAMP pathway in α-MSH-stimulated B16 melanoma cells[J]. Archives of Pharmacal Research, 2008, 31(9): 1166 − 1171. doi: 10.1007/s12272-001-1284-4 |
[15] |
RAHIMI S, KIM J, MIJAKOVIC I, et al. Triterpenoid-biosynthetic UDP-glycosyltransferases from plants[J]. Biotechnology Advances, 2019, 37(7): 107394. doi: 10.1016/j.biotechadv.2019.04.016 |
[16] |
FENG K, XU Z S, LIU J X, et al. Isolation, purification, and characterization of AgUCGalT1, a galactosyltransferase involved in anthocyanin galactosylation in purple celery (Apium graveolens L.)[J]. Planta, 2018, 247(6): 1363 − 1375. doi: 10.1007/s00425-018-2870-5 |
[17] |
XU Z, MA J, WANG F, et al. Identification and characterization of DcUCGalT1, a galactosyltransferase responsible for anthocyanin galactosylation in purple carrot (Daucus carota L.) taproots[J]. Scientific Reports, 2016, 6(1): 27356. doi: 10.1038/srep27356 |
[18] |
HE J B, ZHAO P, HU Z, et al. Molecular and structural characterization of a promiscuous C-glycosyltransferase from trollius chinensis[J]. Angewandte Chemie International Edition, 2019, 58(33): 11513 − 11520. doi: 10.1002/anie.201905505 |
[19] |
KANG H M, SUL J H, SERVICE S K, et al. Variance component model to account for sample structure in genome-wide association studies[J]. Nature Genetics, 2010, 42(4): 348 − 354. doi: 10.1038/ng.548 |
[20] |
毛梦迪. 番茄转录因子SlERF. D6在调控茄碱代谢和果实成熟中的功能研究[D].海口: 海南大学. 2022. |
[21] |
FANG C, LUO J. Metabolic GWAS-based dissection of genetic bases underlying the diversity of plant metabolism[J]. The Plant Journal, 2019, 97(1): 91 − 100. doi: 10.1111/tpj.14097 |
[22] |
KLEIN R J, ZEISS C, CHEW E Y, et al. Complement factor H polymorphism in age-related macular degeneration[J]. Science, 2005, 308(5720): 385 − 389. doi: 10.1126/science.1109557 |
[23] |
SHANG Y, MA Y, ZHOU Y, et al. Biosynthesis, regulation, and domestication of bitterness in cucumber[J]. Science, 2014, 346(6213): 1084 − 1088. doi: 10.1126/science.1259215 |
[24] |
CHEN W, GAO Y, XIE W, et al. Genome-wide association analyses provide genetic and biochemical insights into natural variation in rice metabolism[J]. Nature Genetics, 2014, 46(7): 714 − 721. doi: 10.1038/ng.3007 |
[25] |
PENG M, SHAHZAD R, GUL A, et al. Differentially evolved glucosyltransferases determine natural variation of rice flavone accumulation and UV-tolerance[J]. Nature Communications, 2017, 8(1): 1975. doi: 10.1038/s41467-017-02168-x |
[26] |
TANAKA Y, SASAKI N , OHMIYA A. Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids[J]. The Plant Journal, 2008, 54(4): 733 − 749. doi: 10.1111/j.1365-313X.2008.03447.x |
[27] |
PANG Y, PEEL G J, SHARMA S B, et al. A transcript profiling approach reveals an epicatechin-specific glucosyltransferase expressed in the seed coat of Medicago truncatula[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(37): 14210 − 14215. doi: 10.1073/pnas.0805954105 |
[28] |
ZHAO J AND DIXON R A. transporters facilitate vacuolar uptake of epicatechin 3'-O-glucoside for proanthocyanidin biosynthesis inMedicago truncatula and Arabidopsis[J]. The Plant Cell, 2009, 21(8): 2323 − 2340. doi: 10.1105/tpc.109.067819 |
[29] |
FRYDMAN A, WEISSHAUS O, BAR-PELED M, et al. Citrus fruit bitter flavors: isolation and functional characterization of the gene Cm1, 2RhaT encoding a 1, 2 rhamnosyltransferase, a key enzyme in the biosynthesis of the bitter flavonoids of citrus[J]. The Plant Journal, 2004, 40(1): 88 − 100. doi: 10.1111/j.1365-313X.2004.02193.x |
[30] |
SCHARBERT S , HOFMANN T. Molecular definition of black tea taste by means of quantitative studies, taste reconstitution, and omission experiments[J]. Journal of Agricultural and Food Chemistry, 2005, 53(13): 5377 − 5384. doi: 10.1021/jf050294d |
[31] |
LIU C W, LIN H W, YANG D J, et al. Luteolin inhibits viral-induced inflammatory response in RAW264.7 cells via suppression of STAT1/3 dependent NF-κB and activation of HO-1[J]. Free Radical Biology and Medicine, 2016, 95: 180 − 189. doi: 10.1016/j.freeradbiomed.2016.03.019 |