-
无根藤(Cassytha filiformis)系樟科无根藤属(Cassytha)寄生缠绕草本植物,又名无娘藤、无爷藤、罗网藤等,主要分布于热带和亚热带地区,在我国主产于海南、广西、台湾、贵州以及福建等地区[1]。无根藤为我国民间常用药用植物,常用于糖尿病、风湿关节炎、肾炎水肿以及尿路结石等多种疾病的治疗[2-3]。无根藤的药用成分丰富,包括阿朴菲类生物碱、黄酮及挥发油类等[4]。目前的研究表明,阿朴菲类生物碱是无根藤的特征成分,从无根藤中分离得到30余个阿朴菲类生物碱,主要包括4种结构类型:阿朴菲类生物碱、氧化阿朴菲类生物碱、原阿朴菲类生物碱和吗啡烷类生物碱[5]。近年来,随着药理学和分子生物学的发展,研究人员陆续发现,阿朴菲类生物碱在抗糖尿病方面展示了较好的活性[6-7]。目前,阿朴菲类生物碱在抗糖尿病方面取得一定的研究成果,展示良好的应用前景。但是无根藤来源阿朴菲类生物碱的研究主要集中在抗肿瘤及抗寄生虫方面[8],而在抗糖尿病的研究较少。
为了进一步探究无根藤中阿朴菲类生物碱成分,笔者所在的课题组通过酸溶碱沉和乙酸乙酯萃取法得到无根藤总生物碱浸膏,进一步运用硅胶柱色谱、葡聚糖凝胶、制备薄层色谱法和半制备高效液相色谱等多种色谱方法进行分离纯化,利用核磁共振波谱和高分辨质谱等技术进行结构鉴定。同时,采用葡萄糖氧化酶法评价了所得化合物对HL-7702细胞葡萄糖消耗活性,挖掘无根藤中具有降糖活性的阿朴菲类生物碱,旨在为该植物资源的开发利用提供科学依据。
Analysis of aporphine alkaloids in Cassytha filiformis
-
摘要: 为了寻找无根藤(Cassytha filiformis)中具有降糖活性的阿朴菲类生物碱,以无根藤为研究对象,通过酸溶碱沉法提取,乙酸乙酯萃取获取总生物碱,并通过多种色谱方法进行分离和纯化,再通过波谱学技术鉴定化合物的结构,最后采用葡萄糖氧化酶法评价所得阿朴菲类生物碱对HL-7702细胞葡萄糖消耗活性。鉴定结果发现13个阿朴菲类生物碱,分别鉴定为:无根藤米丁( 1 )、无根藤米里丁( 2 )、小唐松草宁碱( 3 )、新木姜子素( 4 )、N-metilseconeolitsine( 5 )、N-methyl-2,3,6-trimethoxymorphin-andien-7-one( 6 )、10-O-甲基汝兰碱( 7 )、无根藤定碱( 8 )、norneolitsine( 9 )、O-甲基无根藤碱( 10 )、无根藤碱( 11 )、filiformine( 12 )、降南天竹碱( 13 ) , 其中,化合物 5 和 13 首次从该植物中分离得到。细胞葡萄糖消耗活性结果显示,化合物 3 和 11 显著促进HL-7702细胞葡萄糖消耗,具有研究开发成降糖先导化合物的潜在价值。Abstract: In order to discover aporphine alkaloids with hypoglycemic activity in Cassytha filiformis, the total alkaloids were extracted from C. filiformis by acid solubilization and alkaline precipitation, obtained by ethyl acetate extraction, separated and purified by various chromatographic methods. The structures of the compounds purified were identified by using spectrometry, and the glucose oxidase method was used to evaluate the glucose consumption activity of the resulting aporphine alkaloids on HL-7702 cells. Thirteen aporphine alkaloids were identified from the extract of C. filiformis: cassamedine ( 1 ), cassameridine ( 2 ), thalicminine ( 3 ), neolitsine ( 4 ), N-metilseconeolitsine ( 5 ), N-methyl-2, 3, 6-trimethoxymorphin-andien-7-one ( 6 ), 1, 2-methylenedioxy-3, 10, 11-trimethoxyaporphine ( 7 ), cassythidine ( 8 ), norneolitsine ( 9 ), O-methylcassythine ( 10 ), cassythine ( 11 ), filiformine ( 12 ), and 1, 2-Dimethoxy-5, 6, 6a, 7-tetrahydro-4H-benzo[de][1, 3]benzodioxolo[56-g]quinoline ( 13 ). Among them, compounds 5 and 13 were first isolated from C. filiformis. Cellular glucose consumption activity assay showed that compounds 3 and 11 significantly promoted glucose consumption in HL-7702 cells and displayed a potential value for research and development into hypoglycemic lead compounds.
-
[1] ZHANG H X, FLORENTINE S, TENNAKOON K U. The angiosperm stem hemiparasitic genus Cassytha(Lauraceae) and its host interactions: a review[J]. Frontiers in Plant Science, 2022, 13: 864110. [2] ZHANG C, MA H, SANCHEZ-PUERTA M V, et al. Horizontal gene transfer has impacted cox1 gene evolution in Cassytha filiformis[J]. Journal of Molecular Evolution, 2020, 88(4): 361 − 371. doi: 10.1007/s00239-020-09937-1 [3] CHEUNG W L, LAW C Y, LEE H C H, et al. Gelsemium poisoning mediated by the non-toxic plant Cassytha filiformis parasitizing gelsemium elegans[J]. Toxicon, 2018, 154: 42 − 49. doi: 10.1016/j.toxicon.2018.09.009 [4] OUATTARA Z A, SANGARÉ N, MAMYRBEKOVA-BEKRO A J, et al. Composition and chemical variability of essential oils isolated from aerial parts of Cassytha filiformis from côte d′ivoire[J]. Natural Product Communications, 2018, 13(2): 217 − 218. [5] 黄兹宝, 张璐, 董琳, 等. 无根藤的研究进展[J]. 海南医学院学报, 2022, 28(12): 954 − 960. doi: 10.13210/j.cnki.jhmu.20210303.003 [6] 刘欣, 孙洋, 窦利民, 等. 阿朴菲生物碱抗糖尿病生物活性研究进展[J]. 药学进展, 2017, 41(9): 704 − 709. [7] WANG F X, ZHU N, ZHOU F, et al. Natural aporphine alkaloids with potential to impact metabolic syndrome[J]. Molecules, 2021, 26(20): 1 − 22. [8] OLI A N, OBAJI M, ENWEANI I B. Combinations of Alchornea cordifolia, Cassytha filiformis and Pterocarpus santalinoides in diarrhoegenic bacterial infections[J]. BMC Research Notes, 2019, 12(1): 649. doi: 10.1186/s13104-019-4687-0 [9] HUANG Z, CAO M, WANG R, et al. Two new aporphine alkaloids with glucose consumption increasing activity from Cassytha filiformis[J]. Phytochemistry Letters, 2022, 51: 23 − 27. doi: 10.1016/j.phytol.2022.06.013 [10] SHAMMA M, CASTENSON R L. Chapter 6 the oxoaporphine alkaloids[J]. The Alkaloids: Chemistry and Physiology. Amsterdam: Elsevier, 1973: 225 − 264. [11] ZHENG B, QU H Y, MENG T Z, et al. Novel total syntheses of oxoaporphine alkaloids enabled by mild Cu-catalyzed tandem oxidation/aromatization of 1-Bn-DHIQs[J]. RSC Advances, 2018, 8(51): 28997 − 29007. doi: 10.1039/C8RA05338C [12] GARCEZ F R, FRANCISCA DA SILVA A G, GARCEZ W S, et al. Cytotoxic aporphine alkaloids from Ocotea acutifolia[J]. Planta Medica, 2011, 77(4): 383 − 387. doi: 10.1055/s-0030-1250401 [13] GARCÍA M T, BLÁZQUEZ M A, FERRÁNDIZ M J, et al. New alkaloid antibiotics that target the DNA topoisomerase I of Streptococcus pneumoniae[J]. Journal of Biological Chemistry, 2011, 286(8): 6402 − 6413. [14] WU J B, CHENG Y D, CHIU N Y, et al. A Novel morphinandienone alkaloid from Fissistigma oldhamii[J]. Planta Medica, 1993, 59(2): 179 − 180. doi: 10.1055/s-2006-959639 [15] TSAI T H, WANG G J, LIN L C. Vasorelaxing alkaloids and flavonoids from Cassytha filiformis[J]. Journal of Natural Products., 2008, 71(2): 289 − 291. doi: 10.1021/np070564h [16] JONES S R, LAMBERTON J A. Cassytha alkaloids. I. new aporphine alkaloids from Cassytha filiformis L[J]. Australian Journal of Chemistry, 1966, 19(2): 297 − 302. doi: 10.1071/CH9660297 [17] STÉVIGNY C, WAUTIER M C, HABIB JIWAN J L, et al. Development and validation of a HPLC method for quantitative determination of aporphine alkaloids from different samples of Cassytha filiformis[J]. Planta Medica, 2004, 70(8): 764 − 770. doi: 10.1055/s-2004-827209 [18] STÉVIGNY C, BLOCK S, DE PAUW-GILLET M C, et al. Cytotoxic aporphine alkaloids from Cassytha filiformis[J]. Planta Medica, 2002, 68(11): 1042 − 1044. doi: 10.1055/s-2002-35651 [19] CHANG F R, CHAO Y C, TENG C M, et al. Chemical constituents from Cassytha filiformis II[J]. Journal of Natural Products, 1998, 61(7): 863 − 866. doi: 10.1021/np970348g [20] PECIC S, MAKKAR P, CHAUDHARY S, et al. Affinity of aporphines for the human 5-HT2A receptor: insights from homology modeling and molecular docking studies[J]. Bioorganic & Medicinal Chemistry, 2010, 18(15): 5562 − 5575. [21] 陈晶, 李璟. 糖尿病细胞模型及研究进展[J]. 临床与病理杂志, 2016, 36(4): 507 − 514. [22] 杨燕, 卓见, 申红霞, 等. 新型降糖药物治疗2型糖尿病的研究进展[J]. 实用医学杂志, 2023, 39(2): 153 − 157. [23] LIN C J, CHEN C H, LIU F W, et al. Inhibition of intestinal glucose uptake by aporphines and secoaporphines[J]. Life Sciences, 2006, 79(2): 144 − 153. doi: 10.1016/j.lfs.2005.12.031 [24] 金燕. 潺槁树生物碱类成分的发现及其降糖活性研究[D]. 海口: 海南医学院, 2019. [25] ZHANG Y, WANG R Q, YANG Y N, et al. Laurolitsine ameliorates type 2 diabetes by regulating the hepatic LKB1-AMPK pathway and gut microbiota[J]. Phytomedicine, 2022, 106: 1 − 14. [26] CHI T C, LEE S S, SU M J. Antihyperglycemic effect of aporphines and their derivatives in normal and diabetic rats[J]. Planta Medica, 2006, 72(13): 1175 − 1180. doi: 10.1055/s-2006-947199