留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

木薯MKK家族基因的鉴定及表达分析

侯鹏宇 于心怡 肖晓蓉 郑琳琳 陈银华

侯鹏宇, 于心怡, 肖晓蓉, 郑琳琳, 陈银华. 木薯MKK家族基因的鉴定及表达分析[J]. 热带生物学报, 2019, 10(2): 119-126. doi: 10.15886/j.cnki.rdswxb.2019.02.004
引用本文: 侯鹏宇, 于心怡, 肖晓蓉, 郑琳琳, 陈银华. 木薯MKK家族基因的鉴定及表达分析[J]. 热带生物学报, 2019, 10(2): 119-126. doi: 10.15886/j.cnki.rdswxb.2019.02.004
HOU Pengyu, YU Xinyi, XIAO Xiaorong, ZHENG Linlin, CHEN Yinhua. Identification and Expression Analysis of MKK Genes in Cassava[J]. Journal of Tropical Biology, 2019, 10(2): 119-126. doi: 10.15886/j.cnki.rdswxb.2019.02.004
Citation: HOU Pengyu, YU Xinyi, XIAO Xiaorong, ZHENG Linlin, CHEN Yinhua. Identification and Expression Analysis of MKK Genes in Cassava[J]. Journal of Tropical Biology, 2019, 10(2): 119-126. doi: 10.15886/j.cnki.rdswxb.2019.02.004

木薯MKK家族基因的鉴定及表达分析

doi: 10.15886/j.cnki.rdswxb.2019.02.004
基金项目: 

国家自然科学基金(31560497)

海南省研究生创新科研课题(Hys2018-02)

详细信息
    第一作者:

    侯鹏宇(1992-),女,海南大学热带农林学院2016级硕士研究生,E-mail:18789078283@163.com

    通信作者:

    郑琳琳(1983-),女,博士,讲师.研究方向:分子遗传学,E-mail:hildagarde@163.com

  • 中图分类号: S553

Identification and Expression Analysis of MKK Genes in Cassava

  • 摘要: MAPK级联传导通路是广泛存在于真核生物体内的信号传导途径。根据木薯全基因组数据,借鉴拟南芥中MAPKK (MKK)家族的基因序列,通过生物信息学方法对木薯中MKK家族成员进行全面的鉴定以及系统进化树分析。通过激素处理及病原菌接种来分析MKK家族各基因的表达模式。结果表明,木薯总共编码11个MKK基因,这些基因集中分布于木薯第3,4,6,10,12,16,17条染色体上。MKK家族各基因在木薯受到激素处理及病原菌处理后的表达分析结果表明,MKKs能够响应ABA,JA及病原菌信号,对ACC信号则不敏感。MKK4,MKK5,MKK8,MKK9,MKK11可能参与木薯相关防御病原菌及激素信号传导通路。
  • [1] PITZSCHKE A, SCHIKORA A, HIRT H.MAPK cascade signalling networks in plant defence[J].Current Opinion in Plant Biology, 2009, 12 (4) 421-426.
    [2] MENG X Z, ZHANG S Q.MAPK cascades in plant disease resistance signaling[J].Annual Review of Phytopathology, 2013, 51:245-266.
    [3] FULING K, JIE W, LIN C, et al.Genome-wide analysis of the mitogen-activated protein kinase gene family in Solanum lycopersicum[J].Gene, 2012, 499 (1) 108-120.
    [4] NAKAGAMI H, PITZSCHKE A, HIRT H.Emerging MAP kinase pathways in plant stress signaling[J].Trends in Plant Science, 2005, 10 (7) 339-346.
    [5] DANQUAH A, ZELICOURT A, COLCOMBET J, et al.The role of ABA and MAPK signaling pathways in plant abiotic stress responses[J].Biotechnology Advances, 2014, 32 (1):40-52.
    [6] YANG T B, CHAUDHURI S, YANG L H, et al.A calcium/calmodulin-regulated member of the receptor-like kinase family confers cold tolerance in plants[J].JBC Papers in Press, 2009, 285 (10):7119-7126.
    [7] HAN S, WANG C W, WANG W L, et al.Mitogen-activated protein kinase 6 controls root growth in Arabidopsis by modulating Ca2+-based Na+ flux in root cell under salt stress[J].Journal of plant physiology, 2014, 171 (5):26-34.
    [8] SUN H K, DONG H W, JAE M K, et al.Arabidopsis MKK4 mediates osmotic-stress response via its regulation of MPK3 activity[J].Biochemical and Biophysical Research Communications, 2011, 412 (1):150-154.
    [9] LIU Y D, REN D T, SHARON P, et al.Chloroplast-generated reactive oxygen species are involved in hypersensitive response-like cell death mediated by a mitogen-activated protein kinase cascade[J].The Plant Journal, 2007, 51 (6):941-954.
    [10] MCDOWELL M J, JEFFERY L D.Signal transduction in the plant immune response[J].Trends in Biochemical Sciences, 2000, 25 (2):79-82.
    [11] KATHY M, DONG H, JÊRÔME G, et al.Transcript profiling in Vitis riparia during chilling requirement fulfillment reveals coordination of gene expression patterns with optimized bud break[J].Functional & Integrative Genomics, 2009, 9 (1):81-96.
    [12] JAI S.R, YANG Y N.Rice Mitogen-activated Protein Kinase Gene Family and Its Role in Biotic and Abiotic Stress Response[J].Journal of Integrative Plant Biology, 2007, 49 (6):751-759.
    [13] LEI G and CHENG B X.The genetic locus At1g73660 encodes a putative MAPKKK and negatively regulates salt tolerance in Arabidopsis[J].Plant Molecular Biology, 2008, 67 (1/2):125-134.
    [14] HAMEL L P, NICOLE M C, SRITUBTIM S, et al.Ancient signals:comparative genomics of plant MAPK and MAPKK gene families[J].Trends in Plant Science, 2006, 11 (4):192-198.
    [15] SONG Q M, LI D Y, DAI Y, et al.Characterization, expression patterns and functional analysis of the MAPK and MAPKK genes in watermelon (Citrullus lanatus) [J].BMC Plant Biology, 2015, 15 (1):298.
    [16] REN D, YANG K Y, LI G J, et al.Activation of Ntf4, a tobacco mitogen-activated protein kinase, during plant defense response and its involvement in hypersensitive response-like cell death[J].Plant Physiology, 2006, 141 (4):1482-1493.
    [17] WANG J, PAN C T, WANG Y, et al.Genome-wide identification of MAPK, MAPKK, and MAPKKK gene families and transcriptional profiling analysis during development and stress response in cucumber[J].BMC Genomics, 2015, 16 (1):386-402.
    [18] ASAI T, TENA G, PLOTNIKOVA J, et al.MAP kinase signaling cascade in Arabidopsis innate immunity[J].Nature, 2002, 415 (6875):977-983.
    [19] JIA W Y, LI B H, LI S J, et al.Mitogen-activated protein kinase cascade MKK7-MPK6 plays important roles in plant development and regulates shoot branching by phosphorylating PIN1 in Arabidopsis[J].PLoS Biology, 2016, 14 (9):e1002550.
    [20] ZHOU C J, CAI Z H, GUO Y F, et al.An arabidopsis mitogen-activated protein kinase cascade, MKK9-MPK6, plays a role in leaf senescence[J].Plant Physiology, 2009, 150 (1):167-177.
    [21] WANG H C, NGWENYAMA N, LIU Y D, et al.Stomatal development and patterning are regulated by environmentally responsive mitogen-activated protein kinases in Arabidopsis[J].The Plant Cell, 2007, 19 (1):63-73.
    [22] SUAREZ R M C, ADAMS P P L, LIU Y D, et al.MEKK1 is required for flg22-induced MPK4 activation in Arabidopsis plants[J].Plant Physiology, 2006, 143 (2):661-669.
    [23] ZHANG X T, CHENG T C, WANG G H, et al.Cloning and evolutionary analysis of tobacco MAPK gene family[J].Molecular Biology Reports, 2013, 40 (2):1407-1415.
    [24] ZHANG T, CHEN S X, HARMON A C.Protein-protein interactions in plant mitogen-activated protein kinase cascades[J].Journal of Experimental Botany, 2016, 67 (3):607-618.
    [25] KONG X P, PAN J W, ZHANG D, et al.Identification of mitogen-activated protein kinase kinase gene family and MKK-MAPK interaction network in maize[J].Biochemical and Biophysical Research Communications, 2013, 441 (4):964-969.
    [26] MARKUS T, ELISABETH S, THOMAS E, et al.The MKK2 pathway mediates cold and salt stress signaling in Arabidopsis[J].Molecular Cell, 2004, 15 (1):141-152.
    [27] KONG X P, PAN J W, ZHANG D, et al.Identification of mitogen-activated protein kinase kinase gene family and MKK-MAPK interaction network in maize[J].Biochemical and Biophysical Research Communications, 2013, 441 (4):964-969.
    [28] HAMEL L P, NICOLE M C, SRITUBTIM S, et al.Ancient signals:comparative genomics of plant MAPK and MAPKK gene families[J].Trends Plant Sci, 2006, 11 (4):192-198.
    [29] SINHA A K, JAGGI M, RAGHURAM B, et al.Mitogen-activated protein kinase signaling in plants under abiotic stress[J].Plant Signal Behav, 2011, 6 (2):196-203.
    [30] ZHAO L, WANG C, ZHU F, et al.Mild osmotic stress promotes 4-methoxy indolyl-3-methyl glucosinolate biosynthesis mediated by the MKK9-MPK3/MPK6 cascade in Arabidopsis[J].Plant Cell Rep, 2017, 36 (4):543-555.
    [31] LIU Z, LI Y, CAO H, et al.Comparative phospho-proteomics analysis of salt-responsive phosphoproteins regulated by the MKK9-MPK6 cascade in Arabidopsis[J].Plant Sci, 2015, 241:138-150.
    [32] WU D Y, JI J, WANG G, et al.LcMKK, a novel group A mitogen-activated protein kinase kinase gene in Lycium chinense, confers dehydration and drought tolerance in transgenic tobacco via scavenging ROS and modulating expression of stress-responsive genes[J].Plant Growth Regulation, 2015, 76 (3):269-279.
  • [1] 张圆雷, 张宏图, 徐子寅, 李淑霞, 于晓玲, 赵平娟, 李文彬, 张秀春, 于晓惠, 阮孟斌.  干旱模式下木薯气孔密度及生理指标的比较分析 . 热带生物学报, 2025, 16(2): 163-171. doi: 10.15886/j.cnki.rdswxb.20240056
    [2] 郑永清, 李开绵, 李伯松, 马旭东, 陈松笔.  木薯品种不同收获期块根淀粉积累规律分析 . 热带生物学报, 2025, 16(2): 172-180. doi: 10.15886/j.cnki.rdswxb.20240051
    [3] 李慈云, 杨静, 卢东莹, 杨健飞, 杨琦, 王菲, 陈银华, 牛晓磊.  菜豆黄单胞菌侵染下木薯内参基因筛选与评价 . 热带生物学报, 2025, 16(): 1-8. doi: 10.15886/j.cnki.rdswxb.20240201
    [4] 何娇妍, 陈奥, 闫语.  木薯MeKIN10与MeRAV1/2蛋白互作结构域鉴定 . 热带生物学报, 2025, 16(): 1-10. doi: 10.15886/j.cnki.rdswxb.20250028
    [5] 唐璐芝, 吴竞远, 陈元来, 朱彬彬, 赵惠萍.  木薯RXam2的原核蛋白表达及抗病功能分析 . 热带生物学报, 2025, 16(): 1-9. doi: 10.15886/j.cnki.rdswxb.20240147
    [6] 羊娥月, 李杨, 莫明珠, 杨东梅, 刘亚, 吴友根, 于靖.  越南油茶CdMYC2基因克隆、生物信息学分析与表达模式研究 . 热带生物学报, 2025, 16(): 1-9. doi: 10.15886/j.cnki.rdswxb.20250031
    [7] 刘小丽, 韦运谢.  木薯MeAux/IAA19基因的克隆及功能初探 . 热带生物学报, 2025, 16(): 1-7. doi: 10.15886/j.cnki.rdswxb.20240145
    [8] 胡文成, 朱寿松, 王艺璇, 阳达, 陈银华.  木薯茉莉酸氧化酶JOXs基因家族的鉴定及表达模式分析 . 热带生物学报, 2025, 16(): 1-10. doi: 10.15886/j.cnki.rdswxb.20240199
    [9] 张子赫, 郑蔺玲, 李可, 陈银华, 高豫.  木薯ERF基因家族Ⅶ亚族的鉴定与表达分析 . 热带生物学报, 2025, 16(): 1-15. doi: 10.15886/j.cnki.rdswxb.20250035
    [10] 冯亚亭, 张逸杰, 林南方, 陈银华, 骆凯.  木薯不同组织内生细菌多样性的比较分析 . 热带生物学报, 2024, 15(2): 141-149. doi: 10.15886/j.cnki.rdswxb.20230077
    [11] 咸利民, 金海峰, 侯清芳, 彭晓莹, 宁恒亨, 李芬, 吴少英.  普通大蓟马视觉基因的克隆与表达分析 . 热带生物学报, 2024, 15(5): 615-622. doi: 10.15886/j.cnki.rdswxb.20240029
    [12] 贾素行, 朱寿松, 符仁稳, 李春霞, 陈银华.  木薯MePPD3基因的克隆及功能分析 . 热带生物学报, 2024, 15(1): 10-18. doi: 10.15886/j.cnki.rdswxb.20230035
    [13] 董晨, 魏永赞, 王弋, 郑雪文, 李伟才.  转录组荔枝Dof基因家族的鉴定及其表达 . 热带生物学报, 2021, 12(1): 7-14. doi: 10.15886/j.cnki.rdswxb.2021.01.002
    [14] 闫冰玉, 巩笑笑, 谭玉荣, 王丹, 高璇, 张恒, 李双江, 王鹏, 潘英文, 刘进平.  文心兰OnRR10基因的克隆及表达分析 . 热带生物学报, 2020, 11(3): 288-295. doi: 10.15886/j.cnki.rdswxb.2020.03.005
    [15] 白雪杨, 陈秀珍, 黄天帆, 江行玉, 周扬.  盐胁迫下拟南芥SCAMP基因克隆和表达的生物信息学分析 . 热带生物学报, 2020, 11(2): 138-144. doi: 10.15886/j.cnki.rdswxb.2020.02.003
    [16] 楚肖肖, 周双清, 许云, 吴文嫱, 夏薇, 张荣萍, 黄东益, 黄小龙.  红树林植物共附生放线菌的分离鉴定及其抗菌活性分析 . 热带生物学报, 2020, 11(4): 406-414. doi: 10.15886/j.cnki.rdswxb.2020.04.003
    [17] 宋娜, 张刘宁颖, 曹敏, 郭文雅, 洪雨慧, 吴金山, 陈银华, 于晓惠.  木薯ERF转录因子调控的靶基因筛选与表达分析 . 热带生物学报, 2020, 11(2): 177-189. doi: 10.15886/j.cnki.rdswxb.2020.02.008
    [18] 王丹阳, 范亚飞, 周扬, 罗明华, 江行玉, 罗越华, 夏幽泉.  水稻OsNHX5基因的亚细胞定位及表达分析 . 热带生物学报, 2019, 10(2): 106-110,134. doi: 10.15886/j.cnki.rdswxb.2019.02.002
    [19] 任宁, 陈秀珍, 夏幽泉, 白雪杨, 江行玉, 周扬.  木薯MeNRT2.5基因的克隆及表达分析 . 热带生物学报, 2019, 10(2): 111-118. doi: 10.15886/j.cnki.rdswxb.2019.02.003
    [20] 唐枝娟, 朱寿松, 于心怡, 赵锐, 牛晓磊, 陈银华, 耿梦婷.  木薯MeRbohE基因的克隆及表达分析 . 热带生物学报, 2018, 9(2): 170-175. doi: 10.15886/j.cnki.rdswxb.2018.02.007
  • 加载中
  • 计量
    • 文章访问数:  2
    • HTML全文浏览量:  0
    • PDF下载量:  0
    • 被引次数: 0
    出版历程
    • 收稿日期:  2019-01-28
    • 修回日期:  2019-02-27

    木薯MKK家族基因的鉴定及表达分析

    doi: 10.15886/j.cnki.rdswxb.2019.02.004
      基金项目:

      国家自然科学基金(31560497)

      海南省研究生创新科研课题(Hys2018-02)

      作者简介:

      侯鹏宇(1992-),女,海南大学热带农林学院2016级硕士研究生,E-mail:18789078283@163.com

      通讯作者: 郑琳琳(1983-),女,博士,讲师.研究方向:分子遗传学,E-mail:hildagarde@163.com
    • 中图分类号: S553

    摘要: MAPK级联传导通路是广泛存在于真核生物体内的信号传导途径。根据木薯全基因组数据,借鉴拟南芥中MAPKK (MKK)家族的基因序列,通过生物信息学方法对木薯中MKK家族成员进行全面的鉴定以及系统进化树分析。通过激素处理及病原菌接种来分析MKK家族各基因的表达模式。结果表明,木薯总共编码11个MKK基因,这些基因集中分布于木薯第3,4,6,10,12,16,17条染色体上。MKK家族各基因在木薯受到激素处理及病原菌处理后的表达分析结果表明,MKKs能够响应ABA,JA及病原菌信号,对ACC信号则不敏感。MKK4,MKK5,MKK8,MKK9,MKK11可能参与木薯相关防御病原菌及激素信号传导通路。

    English Abstract

    侯鹏宇, 于心怡, 肖晓蓉, 郑琳琳, 陈银华. 木薯MKK家族基因的鉴定及表达分析[J]. 热带生物学报, 2019, 10(2): 119-126. doi: 10.15886/j.cnki.rdswxb.2019.02.004
    引用本文: 侯鹏宇, 于心怡, 肖晓蓉, 郑琳琳, 陈银华. 木薯MKK家族基因的鉴定及表达分析[J]. 热带生物学报, 2019, 10(2): 119-126. doi: 10.15886/j.cnki.rdswxb.2019.02.004
    HOU Pengyu, YU Xinyi, XIAO Xiaorong, ZHENG Linlin, CHEN Yinhua. Identification and Expression Analysis of MKK Genes in Cassava[J]. Journal of Tropical Biology, 2019, 10(2): 119-126. doi: 10.15886/j.cnki.rdswxb.2019.02.004
    Citation: HOU Pengyu, YU Xinyi, XIAO Xiaorong, ZHENG Linlin, CHEN Yinhua. Identification and Expression Analysis of MKK Genes in Cassava[J]. Journal of Tropical Biology, 2019, 10(2): 119-126. doi: 10.15886/j.cnki.rdswxb.2019.02.004
    参考文献 (32)

    目录

      /

      返回文章
      返回