-
橘小实蝇[Bactrocera dorsalis(Hendel)]又名东方果实蝇、柑橘小实蝇,隶属于双翅目(Diptera)实蝇科(Tephritidae)果实蝇属(Bactrocera),是一种危害严重的世界性检疫害虫[1-2]。橘小实蝇起源于热带和亚热带地区,1912年在中国台湾岛被首次记录[3] ,其具有寄主范围广、成虫飞行能力强、气候耐受性高等特点,现已广泛分布于中国、东南亚、印度次大陆以及夏威夷群岛等区域[4]。橘小实蝇危害性主要来源于幼虫的取食,橘小实蝇雌虫会将卵产于寄主植物果皮下,幼虫孵化后大量取食果肉,造成果实腐烂、脱落,严重影响果实产量和质量[5-6],同时严格的检疫政策也限制了橘小实蝇疫区果蔬产品的出口[7]。这些因素对农业生产造成了严重的经济损失[8-9]。
以引诱剂为基础的行为调控技术被认为是一种绿色的害虫防控策略,其主要是指以性信息素、寄主植物挥发物或食物源挥发性气味等为基础合成的人工饵剂,可用于诱集目标害虫,检测、调控害虫种群[10-12]。在橘小实蝇中,以雄性引诱剂甲基丁香酚(methyl eugenol,ME)为代表的雄性歼灭策略(male annihilation technique,MAT)和双性蛋白食诱剂为核心的蛋白诱饵策略(protein bait application technique,BAT)已在种群防控中发挥了重要的作用[13]。但实际应用上也存在一些不足,例如橘小实蝇雄虫能够多次交配,这导致了部分未诱捕雄虫仍能维持较高的雌性繁殖群体[14];此外,蛋白饵剂虽对雌雄虫均具有引诱作用,但在田间具有易降解、有效时间短、易受pH影响等缺点[15-17]。这些因素限制了在田间实际的种群控制效果,因此有必要去开发更多高效、稳定的行为调控策略和产品。
昆虫嗅觉系统是引诱剂发挥功能的基础,它是昆虫长期进化形成的高度敏锐的外周环境感受系统,参与了昆虫觅食、求偶、交配、产卵等各个行为反应[18-19]。解析昆虫的嗅觉识别系统,将为害虫行为调控剂的改良和开发提供重要的理论基础。在昆虫中,触角是主要的嗅觉识别器官,气味分子首先要通过触角感器皮孔进入淋巴液,经气味结合蛋白运输至嗅觉受体神经元,并由神经元上的嗅觉受体将化学信号转化为电信号,传递至上游的触角嗅觉中枢触角叶,各种嗅觉信号在此处被初步加工后进一步通过投射神经元传递至嗅觉高级中枢,从而指导相应的行为反应[20-22]。因此,建立化学物质→嗅觉受体神经元→嗅觉中枢→行为的对应关系,是了解昆虫嗅觉感受系统的重点。橘小实蝇中虽已报道了大量的嗅觉相关蛋白,但这些分子靶标与神经和行为的对应关系仍不明确[23-25],且昆虫触角的感器数量往往众多,类型复杂,通过直接筛选来定位感器、嗅觉受体神经元与化合物的对应关系,往往耗时耗力;此外,传统的神经元染色标记技术在非模式昆虫的应用上也存在着挑战。为克服传统方法的局限性,科学家提出了基于泛神经元表达基因的转基因神经元标记技术[26]。泛神经元表达基因是指一类在神经系统中广泛表达的功能基因,它们几乎存在于所有神经元中,是神经元功能的基础[26-27]。科学家通过这类基因的转录调控区域在神经元上驱动特异性报告基因的表达,从而可实现化感神经元图谱的构建以及对重要化合物感受神经元的标记和活性监测[26]。在模式昆虫果蝇D. melanogaster、埃及伊蚊Aedes aegypti、Anopheles coluzzii中,通过这种技术已达到了对重要化合物感受图谱的绘制[26,28-30]。在这些昆虫中目前常用的目标基因主要包括Brp蛋白基因(Bruchpilot,Brp)、神经元突触小泡结合蛋白基因(neuronal Synaptobrevin,nSyb)、突触结合蛋白1基因(Synaptotagmin1,Syt1)和胚胎致死异常视蛋白基因(Embryonic lethal abnormal vision,Elav)。其中Brp是一种细胞骨架蛋白,主要存在于突触活性区[28];nSyb编码神经元突触小泡蛋白,参与神经传递过程的囊泡运输和融合[31-32];Syt1编码的突触结合蛋白-1是一种Ca2+感受器,可感知钙离子并介导突触小泡的释放,确保信号在神经元之间准确且高效的传递[33];elav是一类神经元特异性RNA结合蛋白,对于神经元分化、成熟和神经系统的维持至关重要[34-35]。
橘小实蝇触角感器丰富,个体微小,开发高效的泛神经元表达工具将有助于橘小实蝇嗅觉系统的研究,但目前在此方向上还没有相关的基础。因此,本研究以果蝇中泛神经元研究常用的4种基因Brp、Syt1、nSyb、elav为基础,克隆了在橘小实蝇中的四类同源基因,并对其进化关系、基因组结构和外周表达模式进行了分析,以期为后续橘小实蝇泛神经元表达体系的构建提供基础。
-
利用黑腹果蝇的DmBrp,DmnSyb,DmSyt1和Dmelav四种基因的全基因组蛋白序列,在实验室前期测序组装的橘小实蝇全基因组蛋白序列中均获得了高度同源序列(表1),并分别命名为BdorBrp,BdornSyb,BdorSyt1和Bdorelav。为了进一步提高此类基因功能预测的准确性,选取了此类基因在双翅目以及其他有报道的相关物种中的序列,通过最大似然法(maximum likelihood method)构建了系统发育树,结果表明,13种nSyb蛋白序列、16种Syt1蛋白序列、17种elav蛋白序列和2种Brp蛋白序列(序列信息详见表2)聚为四类,分别对应nSyb,Syt1,elav和Brp四个基因家族(图1)。
表 1 橘小实蝇中鉴定的nSyb、Syt1、elav、Brp基因
Table 1. nSyb, Syt1, elav, Brp genes identified in B.dorsalis
单基因参考
Unigene reference基因名称
GeneBlastx最佳匹配(参考/名称/物种)
Blastx best hit(Reference/Name/Species)E值
E-valueInsectG05000 BdornSyb XM_011200958.4, vesicle-associated membrane protein 2 [Bactrocera dorsalis] 0 InsectG08551 BdorSyt1 XM_049446701.1, synaptotagmin 1, [Bactrocera dorsalis] 0 InsectG12478 Bdorelav XM_019990231.3, elav, [Bactrocera dorsalis] 0 InsectG14028 BdorBrp XM_049452037.1, ELKS/Rab6-interacting/CAST family member 1 [Bactrocera dorsalis] 0 表 2 保守基序分析使用的序列号
Table 2. Sequence numbers used in conserved motif analysis
基因名称
Gene序列号
Sequence number缩写
AbbreviationDrosophila melanogaster bruchpilot isoformN UYI57892.1 DmBrp.N Bdorbruchpilot BdorBrp Spodoptera littoralis Bruchpilot ASO76502.1 SlBrp Drosophila montana nSyb isoform X3 XP_064541710.1 DmonSyb.X3 Drosophila sulfurigaster albostrigata nSyb isoform X2 XP_062130853.1 DsulnSyb.X2 Drosophila nasuta nSyb isoform X2 XP_060658090.1 DnasnSyb.X2 Drosophila albomicans nSyb XP_034107380.1 DalbnSyb Drosophila melanogaster nSyb isoform G NP_ 728645.1 DmnSyb Drosophila suzukii nSyb XP_016933912.1 DsuznSyb Drosophila gunungcola nSyb isoform X1 XP_052847459.1 DgunnSyb.X1 Stomoxys calcitrans nSyb isoform X5 XP_013113466.1 ScalnSyb.X5 Musca domestica nSyb isoform X1 XP_058983425.1 MdomnSyb.X1 Musca vetustissima nSyb XP_061396193.1 MvetnSyb Bactrocera dorsalis nSyb BdornSyb Zeugodacus cucurbitae nSyb isoform X5 XP_011196106.1 ZcucnSyb.X5 Anastrepha obliqua nSyb isoform X3 XP_054734036.1 AoblnSyb.X3 Anastrepha ludens nSyb isoform X1 XP_053953598.1 AludnSyb.X1 Drosophila melanogaster synaptotagmin 1 isoform A NP_ 523460.2 DmSyt1.A Drosophila suzukii synaptotagmin 1 isoform X1 XP_016937535.1 DsuznSyt1.X1 Drosophila biarmipes synaptotagmin 1 isoform X1 XP_016954801.1 DbianSyt1.X1 Drosophila yakuba synaptotagmin 1 isoform X1 XP 002087728.1 DyaknSyt1.X1 Drosophila rhopaloa synaptotagmin 1 isoform X5 XP_016991250.1 DrhonSyt1.X5 Scaptodrosophila lebanonensis synaptotagmin 1 isoform X1 XP_030383437.1 SlebSyt1.X1 Drosophila busckii synaptotagmin 1 isoform X1 XP_017854866.1 DbusSyt1.X1 Calliphora vicina synaptotagmin 1isoform X4 XP_065357607.1 CvicSyt1.X4 Ceratitis capitata synaptotagmin1 isoform X1 XP_004537793.1 CcapSyt1.X1 Rhagoletis zephyria synaptotagmin 1 isoform X1 XP_017494880.1 RzepSyt1.X1 Anastrepha ludens synaptotagmin 1 isoform X4 XP_053961234.1 AluSyt1.X4 Anastrepha obliqua synaptotagmin 1 isoform X1 XP_054742113.1 AoblSyt1.X1 Zeugodacus cucurbitae synaptotagmin 1 isoform X1 XP_011192440.1 ZcucSyt1.X1 Bactrocera oleae synaptotagmin 1 isoform X4 XP_036230797.1 BoleSyt1.X4 Bactrocera oleae synaptotagmin 1 isoform X3 XP_014103290.1 BoleSyt1.X3 Bactrocera latifrons synaptotagmin 1 isoform X1 XP_018789563.1 BlatSyt1.X1 Bdorsynaptotagmin1 BdorSyt1 Rhagoletis zephyria elav XP_017491017.1 Rzepelav Anastrepha ludens elav XP_053952087.1 Aludelav Anastrepha obliqua elav isoform X2 XP_054729194.1 Aoblelav.X2 Ceratitis capitata elav isoform X2 XP_004519191.1 Ccapelav.X2 Zeugodacus cucurbitae elav isoform X3 XP_028893842.1 Zcucelav.X3 Bactrocera oleae elav isoform X1 XP_014097934.1 Boleelav.X1 Bactrocera latifrons elav isoform X1 XP_018782793.1 Blatelav.X1 Bdorelav Bdorelav Lucilia cuprina elav KAI8116666.1 Lcupelav Calliphora vicina elav XP_065364064.1 Cvicelav Drosophila melanogaster elav isoform B NP_001014713.1 Dmelav Drosophila obscura elav XP_041450494.1 Dobselav Drosophila virilis elav EDW63036.2 Dvirelav Drosophila innubila elav XP_034490791.1 Dinnelav Drosophila novamexicana elav XP_030568764.1 Dnovelav Drosophila montana elav isoform X2 XP_064547165.1 Dmonelav.X2 Drosophila mojavensis elav isoform X2 XP_032587857.1 Dmojelav.X2 Drosophila navojoa elav isoform X1 XP_017963840.1 Dnavelav.x1 -
在上述橘小实蝇4种泛神经元表达基因鉴定的基础上,进一步结合系统发育树构建选取基因对应的蛋白序列进行了保守基序分析(图2)。结果表明,nSyb蛋白共包含8个保守基序,不同物种的蛋白序列包括的保守基序数量为4~7个。除西印度按实蝇(Anastrepha obliqua,A. obliqua)外,所有序列均含有5个相同的保守基序,顺序为“2-1-3-5-6”,基序8只存在于橘小实蝇和西印度按实蝇中,其中橘小实蝇nSyb还缺乏保守基序4(图2-A);Syt1蛋白共包含10个保守基序,不同物种的蛋白序列包含的保守基序数量为9~10个。其中,黎巴嫩花果蝇(Scaptodrosophila lebanonensis)、醋果蝇(Drosophila busckii)和红头丽蝇(Calliphora vicina )中无保守基序10。橘小实蝇Syt1蛋白和大多数物种序列一致,包含10个保守基序,顺序为“10-8-5-4-7-2-9-6-3-1”(图2-B);Elav蛋白序列共包含10个保守基序,不同物种的保守基序数量均为10个,橘小实蝇与其他实蝇的序列结构高度相似,顺序均为“10-8-1-4-9-6-2-7-5-3”(图2-C);Brp蛋白共包含8个保守基序,不同物种保守基序数量为1~7个(SIBrp仅包含2个,推测是序列的不完整性导致的)。橘小实蝇的Brp蛋白保守基序中无保守基序2,其他基序类型与果蝇高度相似,顺序为“1-5-6-8-3-4-7”(图2-D)。
-
通过实验室已有组装完整的转录组和基因组数据(国家生物信息中心 GSA 数据库,PRJCA020830),获得BdornSyb、BdorSyt1、Bdorelav、BdorBrp完整的外显子—内含子基因结构,并与黑腹果蝇以及几种有报道结构的近缘实蝇科昆虫进行了比对(图3和表3)。结果表明,BdornSyb基因组长度为19 337 bp,包含5个外显子、4个内含子,与近缘种西印度按实蝇(A. obliqua)、墨西哥按实蝇(Anastrepha ludens)、瓜实蝇(Zeugodacus cucurbitae)以及黑腹果蝇(Drosophila melanogaster)具有相同数量的外显子数(图3A)。BdorSyt1基因组长度为26 884 bp,包含8个外显子、7个内含子,与近缘种辣椒实蝇(Bactrocera latifrons)、橄榄实蝇(Bactrocera oleae)、西印度按实蝇(A. obliqua)、墨西哥按实蝇(A. ludens)以及黑腹果蝇(D. melanogaster)具有相同数量的外显子数(图3-B)。Bdorelav基因结构特殊,只包含1个外显子,无内含子,整个基因组长度为1 341 bp;辣椒实蝇(B. latifrons)、橄榄实蝇(B. oleae)、地中海实蝇(Ceratitis capitata)、瓜实蝇(Z. cucurbitae)以及黑腹果蝇(D. melanogaster)中的elav基因结构与Bdorelav相似,也只有1个外显子(平均长度1 278.00~1 440.00 bp)(图3-C)。BdorBrp基因组长度为49 692 bp,包含14个外显子和13个内含子,而黑腹果蝇的Brp包含22个外显子和21个内含子(图3-D)。总体而言,除Brp外,另外3种基因的结构域在近缘种中都高度保守。
图 3 BdornSyb、BdorSyt1、Bdorelav、BdorBrp的外显子—内含子基因结构
Figure 3. Exon-intron gene structures of BdornSyb, BdorSyt1, Bdorelav and BdorBrp
表 3 BdornSyb、BdorSyt1、Bdorelav、BdorBrp的外显子和内含子的数量及平均长度表
Table 3. Number and average length of exons and introns of BdornSyb, BdorSyt1, Bdorelav, BdorBrp
基因名称
Gene物种名称
Species外显子数量/个
Number of exons外显子平均长度/bp
Average length
of exons/bp内含子数量/个
Number of introns内含子平均长度/bp
Average length
of introns/bpnSyb 橘小实蝇Bactrocera dorsalis 5 105.60 4 4702.25 西印度按实蝇Anastrepha obliqua 5 111.60 4 6308.50 墨西哥按实蝇Anastrepha ludens 5 111.60 4 5251.50 瓜实蝇Zeugodacus cucurbitae 5 154.80 4 1887.25 黑腹果蝇Drosophila melanogaster 5 115.80 4 780.00 Syt1 橘小实蝇Bactrocera dorsalis 8 174.00 7 3641.71 辣椒实蝇Bactrocera latifrons 8 174.00 7 3761.57 橄榄实蝇Bactrocera oleae 8 216.00 7 2962.43 西印度按实蝇Anastrepha obliqua 8 174.75 7 8321.00 墨西哥按实蝇Anastrepha ludens 8 237.38 7 7890.71 黑腹果蝇Drosophila melanogaster 8 178.13 7 1342.29 elav 橘小实蝇Bactrocera dorsalis 1 1341.00 0 0 辣椒实蝇Bactrocera latifrons 1 1332.00 0 0 橄榄实蝇Bactrocera oleae 1 1278.00 0 0 地中海实蝇Ceratitis capitata 1 1278.00 0 0 瓜实蝇Zeugodacus cucurbitae 1 1278.00 0 0 黑腹果蝇Drosophila melanogaster 1 1440.00 0 0 Brp 橘小实蝇Bactrocera dorsalis 14 305.57 13 3493.38 黑腹果蝇Drosophila melanogaster 22 308.05 21 1060.95 -
为确定序列的准确性,在基因结构的基础上,设计了特异性的扩增引物(引物和PCR条件详见表4)对CDS序列进行了验证,并成功克隆了四种基因的CDS序列,电泳胶图显示了与目标序列一致的长度(图4)。将条带回收后连接至blunt载体,进一步通过生工测序验证了目标条带的正确性。其中,BdornSyb CDS序列长528 bp,编码一个由175个氨基酸组成的蛋白,理论等电点为4.87,分子量为18.57 kDa,不稳定性指数为51.33,脂肪族指数为78.69,平均亲水性指数为−0.509;BdornSyt1 CDS序列长1 392 bp,编码一个由463个氨基酸组成的蛋白,理论等电点为5.53,分子量为52.39 kDa,不稳定性指数为43.26,脂肪族指数为81.02,平均亲水性指数为−0.462;Bdorelav CDS序列长1 341 bp,编码一个由446个氨基酸组成的蛋白,理论等电点为8.92,分子量为47.18 kDa,不稳定性指数为38.77,脂肪族指数为79.15,平均亲水性指数为−0.208;BdorBrp CDS序列长4 278 bp,编码一个由1 425个氨基酸组成的蛋白,理论等电点为5.69,分子量为16.65 kDa,不稳定性指数为56.39,脂肪族指数为73.03,平均亲水性指数为−2.201。
图 4 四种基因CDS序列的PCR扩增胶图及引物位置示例
Figure 4. Gel images of PCR amplification and primer positions of CDS sequences of four genes
表 4 引物信息及PCR条件
Table 4. Summary of primers and PCR conditions
基因
GenePCR引物
PCR primersPCR条件
PCR conditionsBdornSyb F: ATGGCGGAACCAGCACC
R: TTATACTGCACCGTGCTGCTCT98 ℃ 3 min;98 ℃ 10 s, 55 ℃ 15 s, 72 ℃ 延伸 40 s,共40循环;72 ℃延伸10 min;10 ℃保存 BdorSyt1 F: ATGCCGCCAAACACGAATACG
R: TTACTTCATATTCTTCAGTATTTCATCGGT98 ℃ 3 min;98 ℃ 10 s, 55 ℃ 15 s, 72 ℃ 延伸 1 min 40 s,共40循环;72 ℃延伸10 min;10 ℃保存 Bdorelav F: ATGGACTTTATGATGGCGAATGC
R: TTACTTTGATTTGTTGGTCTTGAAGCT98 ℃ 3 min;98 ℃ 10 s, 55 ℃ 15 s, 72 ℃ 延伸 1 min 30 s,共40循环;72 ℃延伸10 min;10 ℃保存 BdorBrp F1: ATGGACAATGCCTACGTCTACTATAAGTT
R1: CGTTTCGAGTTCCATAAGGGTTTTGT
F2: GAGCCAAGTGGAGTTACGTAAACT
R2: TTAGAAAAAGCTCTTCAAGAATCCAGCTGGT98 ℃ 3 min;98 ℃ 10 s, 55 ℃ 15 s, 72 ℃ 延伸 2 min 30 s,共40循环;72 ℃延伸10 min;10 ℃保存 -
通过比较橘小实蝇雌雄外周感觉器官的转录组,获得了四种基因在外周的表达模式,并同时利用定量反转录聚合酶连锁反应(qRT-PCR)进行了验证。结果表明,BdornSyb和BdorSyt1在雌性触角和下颚须,雄性触角、口器(去下颚须)和下颚须中均显著表达,但在两性前、中、后足及外生殖器中的表达量较少(图5-A,B);雄性在口器(去下颚须)、下颚须上的BdornSyb表达量明显高于雌性,在前足上的BdorSyt1表达量显著高于于雌性,其余组织雌雄表达量无显著差异。Bdorelav在雌雄中的表达模式没有明显差异,在各个组织均有一定的表达量,其中下颚须的表达量最高(图5-C);BdorBrp主要表达于触角和下颚须,其余组织几乎不表达,雌性下颚须上的表达量显著高于雄性(图5-D)。
Identification and analysis of four pan-neuronal expression genes in Bactrocera dorsalis
-
摘要: 害虫中枢神经功能研究是开发精准行为调控技术的基础。尽管基于遗传操作的神经标记技术在这一领域发挥了重要作用,但针对以橘小实蝇Bactrocera dorsalis为代表的非模式昆虫,此类技术仍相对匮乏。本研究旨在鉴定橘小实蝇的四种泛神经元表达基因,为构建橘小实蝇神经标记体系奠定基础。我们运用生物信息学和分子生物学技术,对橘小实蝇的泛神经元表达基因的基因组结构进行了鉴定和分析,并验证了其全长序列及外周表达模式。结果表明,通过参考果蝇的四种泛神经元表达基因,在橘小实蝇中鉴定出四种同源基因,即BdornSyb、BdorSyt1、Bdorelav和BdorBrp;这四种基因的基因组全长分别为
19337 bp(5个外显子、4个内含子)、26884 bp(8个外显子、7个内含子)、1341 bp(1个外显子)和49692 bp(14个外显子、13个内含子),BdornSyb、BdorSyt1、Bdorelav的结构域在近缘物种中高度保守;PCR克隆结果表明,这四种基因的CDS序列长度均在500 bp以上,与生物信息学分析结果相符;进化以及基因组结构分析显示四种基因在双翅目昆虫中高度保守;表达模式分析表明,四种基因在橘小实蝇外周感觉器官均有表达,其中BdornSyb、BdorSyt1和BdorBrp在主要嗅觉器官——触角和下颚须中表现出较高的表达水平。本研究在橘小实蝇中鉴定了四种泛神经元表达候选基因,这些结果为未来构建橘小实蝇的泛神经元标记体系提供了基础。Abstract: Research on the central nervous system function of pests forms the foundation for developing precise behavior control technologies. Despite the significant role of neuron-labeling techniques based on genetic manipulation in this field, such techniques remain relatively scarce for non-model insects, such as the oriental fruit fly, Bactrocera dorsalis. In this context an attempt was made to identify four pan-neuronal expression genes in B. dorsalis with a view to laying the groundwork for constructing a neuron-labeling system for this species. The genomic structures of the pan-neuronal expression genes in B. dorsalis were identified and analyzed by employing bioinformatics and molecular biology to verify their full-length sequences and peripheral expression patterns. The results indicate that, by referring to four pan-neuronal expression genes from Drosophila, four homologous genes were identified in the B. dorsalis, namely BdornSyb, BdorSyt1, Bdorelav, and BdorBrp. The full genomic lengths of these four genes are 19,337 bp (5 exons, 4 introns), 26,884 bp (8 exons, 7 introns), 1,341 bp (1 exon), and 49,692 bp (14 exons, 13 introns), respectively. The domains of BdornSyb, BdorSyt1, and Bdorelav are highly conserved among closely related species. PCR cloning results indicated that the CDS sequence lengths of these four genes are all over 500 bp, consistent with the bioinformatics analysis results. Evolutionary and genomic structure analyses demonstrated that the four genes are highly conserved among Diptera insects. Expression pattern analysis revealed that all the four genes are expressed in the peripheral sensory organs of B. dorsalis, with three genes, BdornSyb, BdorSyt1 and BdorBrp, showing higher expression levels in the primary olfactory organs, the antennae, and the maxillary palp. The four genes identified are candidate pan-neuronal expression genes in B. dorsalis, providing a foundation for constructing a pan-neuronal labeling system for this species in the future. -
图 2 BdornSyb、BdorSyt1、Bdorelav、BdorBrp的保守基序分析
每个图表示四个基因通过比较序列分析鉴定的保守序列基序,彩色框表示特定的保守结构域,并标注了保守区的详细序列信息。分析所使用序列的序列号详见表2。
Fig. 2 Conserved Motif analysis of BdornSyb, BdorSyt1, Bdorelav, and BdorBrp
Each figure represents the conserved sequence motifs identified by comparative sequence analysis of the four genes. The color box represents a specific conserved domain, and the detailed sequence information of the conserved region is marked. The sequence numbers of the sequences used in the analysis are shown in Tab. 2.
图 5 BdornSyb、BdorSyt1、Bdorelav、BdorBrp的外周表达谱分析
小图A、B、C、D的左边热图显示了四种基因的转录组分析结果,行表示雌雄组的不同外周组织,分别为An:触角,M(-Mp):去下颚须的口器,Mp:下颚须,L1:前足,L2:中足,L3:后足,G:外生殖器;列对应各组的单个样本。右边为验证转录水平的qRT-PCR结果,数据差异分析采用非配对t检验(“ns”表示无显著差异,“*”表示p<0.05,“**”表示p<0.01)。
Fig. 5 Peripheral nerve tissue expression profile of BdornSyb, BdorSyt1, Bdorelav and BdorBrp
The left heat map of Figs. A, B, C and D shows the transcriptome analysis of the four genes. The lines represent different peripheral tissues of the male and female groups, respectively. An: antenna; M(-Mp): mouthparts without maxillary palp; Mp: maxillary palp; L1: forefoot; L2: midfoot; L3: hindfoot; G: external genitalia. Columns correspond to a single sample of each group. The right side was to verify the qRT-PCR results at the transcription level, and the data difference analysis was performed using the unpaired t test( 'ns' indicates no significant difference; '*' indicates p < 0.05; '* *' indicates p < 0.01 ).
表 1 橘小实蝇中鉴定的nSyb、Syt1、elav、Brp基因
Table 1 nSyb, Syt1, elav, Brp genes identified in B.dorsalis
单基因参考
Unigene reference基因名称
GeneBlastx最佳匹配(参考/名称/物种)
Blastx best hit(Reference/Name/Species)E值
E-valueInsectG05000 BdornSyb XM_011200958.4, vesicle-associated membrane protein 2 [Bactrocera dorsalis] 0 InsectG08551 BdorSyt1 XM_049446701.1, synaptotagmin 1, [Bactrocera dorsalis] 0 InsectG12478 Bdorelav XM_019990231.3, elav, [Bactrocera dorsalis] 0 InsectG14028 BdorBrp XM_049452037.1, ELKS/Rab6-interacting/CAST family member 1 [Bactrocera dorsalis] 0 表 2 保守基序分析使用的序列号
Table 2 Sequence numbers used in conserved motif analysis
基因名称
Gene序列号
Sequence number缩写
AbbreviationDrosophila melanogaster bruchpilot isoformN UYI57892.1 DmBrp.N Bdorbruchpilot BdorBrp Spodoptera littoralis Bruchpilot ASO76502.1 SlBrp Drosophila montana nSyb isoform X3 XP_064541710.1 DmonSyb.X3 Drosophila sulfurigaster albostrigata nSyb isoform X2 XP_062130853.1 DsulnSyb.X2 Drosophila nasuta nSyb isoform X2 XP_060658090.1 DnasnSyb.X2 Drosophila albomicans nSyb XP_034107380.1 DalbnSyb Drosophila melanogaster nSyb isoform G NP_ 728645.1 DmnSyb Drosophila suzukii nSyb XP_016933912.1 DsuznSyb Drosophila gunungcola nSyb isoform X1 XP_052847459.1 DgunnSyb.X1 Stomoxys calcitrans nSyb isoform X5 XP_013113466.1 ScalnSyb.X5 Musca domestica nSyb isoform X1 XP_058983425.1 MdomnSyb.X1 Musca vetustissima nSyb XP_061396193.1 MvetnSyb Bactrocera dorsalis nSyb BdornSyb Zeugodacus cucurbitae nSyb isoform X5 XP_011196106.1 ZcucnSyb.X5 Anastrepha obliqua nSyb isoform X3 XP_054734036.1 AoblnSyb.X3 Anastrepha ludens nSyb isoform X1 XP_053953598.1 AludnSyb.X1 Drosophila melanogaster synaptotagmin 1 isoform A NP_ 523460.2 DmSyt1.A Drosophila suzukii synaptotagmin 1 isoform X1 XP_016937535.1 DsuznSyt1.X1 Drosophila biarmipes synaptotagmin 1 isoform X1 XP_016954801.1 DbianSyt1.X1 Drosophila yakuba synaptotagmin 1 isoform X1 XP 002087728.1 DyaknSyt1.X1 Drosophila rhopaloa synaptotagmin 1 isoform X5 XP_016991250.1 DrhonSyt1.X5 Scaptodrosophila lebanonensis synaptotagmin 1 isoform X1 XP_030383437.1 SlebSyt1.X1 Drosophila busckii synaptotagmin 1 isoform X1 XP_017854866.1 DbusSyt1.X1 Calliphora vicina synaptotagmin 1isoform X4 XP_065357607.1 CvicSyt1.X4 Ceratitis capitata synaptotagmin1 isoform X1 XP_004537793.1 CcapSyt1.X1 Rhagoletis zephyria synaptotagmin 1 isoform X1 XP_017494880.1 RzepSyt1.X1 Anastrepha ludens synaptotagmin 1 isoform X4 XP_053961234.1 AluSyt1.X4 Anastrepha obliqua synaptotagmin 1 isoform X1 XP_054742113.1 AoblSyt1.X1 Zeugodacus cucurbitae synaptotagmin 1 isoform X1 XP_011192440.1 ZcucSyt1.X1 Bactrocera oleae synaptotagmin 1 isoform X4 XP_036230797.1 BoleSyt1.X4 Bactrocera oleae synaptotagmin 1 isoform X3 XP_014103290.1 BoleSyt1.X3 Bactrocera latifrons synaptotagmin 1 isoform X1 XP_018789563.1 BlatSyt1.X1 Bdorsynaptotagmin1 BdorSyt1 Rhagoletis zephyria elav XP_017491017.1 Rzepelav Anastrepha ludens elav XP_053952087.1 Aludelav Anastrepha obliqua elav isoform X2 XP_054729194.1 Aoblelav.X2 Ceratitis capitata elav isoform X2 XP_004519191.1 Ccapelav.X2 Zeugodacus cucurbitae elav isoform X3 XP_028893842.1 Zcucelav.X3 Bactrocera oleae elav isoform X1 XP_014097934.1 Boleelav.X1 Bactrocera latifrons elav isoform X1 XP_018782793.1 Blatelav.X1 Bdorelav Bdorelav Lucilia cuprina elav KAI8116666.1 Lcupelav Calliphora vicina elav XP_065364064.1 Cvicelav Drosophila melanogaster elav isoform B NP_001014713.1 Dmelav Drosophila obscura elav XP_041450494.1 Dobselav Drosophila virilis elav EDW63036.2 Dvirelav Drosophila innubila elav XP_034490791.1 Dinnelav Drosophila novamexicana elav XP_030568764.1 Dnovelav Drosophila montana elav isoform X2 XP_064547165.1 Dmonelav.X2 Drosophila mojavensis elav isoform X2 XP_032587857.1 Dmojelav.X2 Drosophila navojoa elav isoform X1 XP_017963840.1 Dnavelav.x1 表 3 BdornSyb、BdorSyt1、Bdorelav、BdorBrp的外显子和内含子的数量及平均长度表
Table 3 Number and average length of exons and introns of BdornSyb, BdorSyt1, Bdorelav, BdorBrp
基因名称
Gene物种名称
Species外显子数量/个
Number of exons外显子平均长度/bp
Average length
of exons/bp内含子数量/个
Number of introns内含子平均长度/bp
Average length
of introns/bpnSyb 橘小实蝇Bactrocera dorsalis 5 105.60 4 4702.25 西印度按实蝇Anastrepha obliqua 5 111.60 4 6308.50 墨西哥按实蝇Anastrepha ludens 5 111.60 4 5251.50 瓜实蝇Zeugodacus cucurbitae 5 154.80 4 1887.25 黑腹果蝇Drosophila melanogaster 5 115.80 4 780.00 Syt1 橘小实蝇Bactrocera dorsalis 8 174.00 7 3641.71 辣椒实蝇Bactrocera latifrons 8 174.00 7 3761.57 橄榄实蝇Bactrocera oleae 8 216.00 7 2962.43 西印度按实蝇Anastrepha obliqua 8 174.75 7 8321.00 墨西哥按实蝇Anastrepha ludens 8 237.38 7 7890.71 黑腹果蝇Drosophila melanogaster 8 178.13 7 1342.29 elav 橘小实蝇Bactrocera dorsalis 1 1341.00 0 0 辣椒实蝇Bactrocera latifrons 1 1332.00 0 0 橄榄实蝇Bactrocera oleae 1 1278.00 0 0 地中海实蝇Ceratitis capitata 1 1278.00 0 0 瓜实蝇Zeugodacus cucurbitae 1 1278.00 0 0 黑腹果蝇Drosophila melanogaster 1 1440.00 0 0 Brp 橘小实蝇Bactrocera dorsalis 14 305.57 13 3493.38 黑腹果蝇Drosophila melanogaster 22 308.05 21 1060.95 表 4 引物信息及PCR条件
Table 4 Summary of primers and PCR conditions
基因
GenePCR引物
PCR primersPCR条件
PCR conditionsBdornSyb F: ATGGCGGAACCAGCACC
R: TTATACTGCACCGTGCTGCTCT98 ℃ 3 min;98 ℃ 10 s, 55 ℃ 15 s, 72 ℃ 延伸 40 s,共40循环;72 ℃延伸10 min;10 ℃保存 BdorSyt1 F: ATGCCGCCAAACACGAATACG
R: TTACTTCATATTCTTCAGTATTTCATCGGT98 ℃ 3 min;98 ℃ 10 s, 55 ℃ 15 s, 72 ℃ 延伸 1 min 40 s,共40循环;72 ℃延伸10 min;10 ℃保存 Bdorelav F: ATGGACTTTATGATGGCGAATGC
R: TTACTTTGATTTGTTGGTCTTGAAGCT98 ℃ 3 min;98 ℃ 10 s, 55 ℃ 15 s, 72 ℃ 延伸 1 min 30 s,共40循环;72 ℃延伸10 min;10 ℃保存 BdorBrp F1: ATGGACAATGCCTACGTCTACTATAAGTT
R1: CGTTTCGAGTTCCATAAGGGTTTTGT
F2: GAGCCAAGTGGAGTTACGTAAACT
R2: TTAGAAAAAGCTCTTCAAGAATCCAGCTGGT98 ℃ 3 min;98 ℃ 10 s, 55 ℃ 15 s, 72 ℃ 延伸 2 min 30 s,共40循环;72 ℃延伸10 min;10 ℃保存 -
[1] 路纪芳, 蔡静芸, 陈乾, 等. 我国橘小实蝇危害习性及防治技术研究进展[J]. 中国森林病虫, 2023, 42(6): 28 − 32. [2] CLARKE A R, ARMSTRONG K F, CARMICHAEL A E, et al. Invasive phytophagous pests arising through a recent tropical evolutionary radiation: the Bactrocera dorsalis complex of fruit flies[J]. Annual review of entomology, 2005, 50: 293 − 319. doi: 10.1146/annurev.ento.50.071803.130428 [3] WAN X, NARDI F, ZHANG B, et al. The oriental fruit fly, Bactrocera dorsalis, in China: origin and gradual inland range expansion associated with population growth[J]. PLoS One, 2011, 6(10): e25238. doi: 10.1371/journal.pone.0025238 [4] LIU H, ZHANG D J, XU YI-JUAN, et al. Invasion, expansion, and control of Bactrocera dorsalis (Hendel) in China[J]. Journal of Integrative Agriculture, 2019, 18(4): 771 − 787. doi: 10.1016/S2095-3119(18)62015-5 [5] CHRISTENSON L D, FOOTE R H. Biology of fruit flies[J]. Annual review of entomology, 1960, 5: 171 − 192. doi: 10.1146/annurev.en.05.010160.001131 [6] 方薛交, 闫振华, 张金龙, 等. 桔小实蝇成虫对不同水果的产卵为害特点及种群动态[J]. 云南农业大学学报(自然科学), 2017, 32(2): 212 − 217. [7] ONO H, HEE A K, JIANG H. Recent Advancements in Studies on Chemosensory Mechanisms Underlying Detection of Semiochemicals in Dacini Fruit Flies of Economic Importance (Diptera: Tephritidae)[J]. Insects, 2021, 12(2): 106. doi: 10.3390/insects12020106 [8] 宁昭玉. 桔小实蝇对福建省危害的经济损失评估与风险评价[D]. 福州: 福建农林大学, 2008. [9] 黄焕光. 广东省果实蝇调查及桔小实蝇经济安全评估[D]. 广州: 华南农业大学, 2010. [10] 闫凯莉, 唐良德, 吴建辉, 等. 诱杀技术在害虫综合治理(IPM)中的应用[J]. 中国植保导刊, 2016, 36(6): 17 − 25. doi: 10.3969/j.issn.1672-6820.2016.06.004 [11] 蔡晓明, 李兆群, 潘洪生, 等. 植食性害虫食诱剂的研究与应用[J]. 中国生物防治学报, 2018, 34(1): 8 − 35. [12] 张杰, 张艳, 刘伟, 等. 橘小实蝇化学通讯机制与引诱剂开发策略[J]. 昆虫学报, 2023, 66(1): 108 − 120. [13] ALLWOOD A J, VUETI E T, LEBLANC L, et al. Eradication of introduced Bactrocera species (Diptera: Tephritidae) in Nauru using male annihilation and protein bait application techniques[C]// C. R. Veitch, M. N. Clout, et al. Turning the Tide: The Eradication of Invasive Species. Gland, Switzerland: IUCN-The World Conservation Union, 2003: 19 − 25. [14] BENELLI G, DAANE K M, CANALE A, et al. Sexual communication and related behaviours in Tephritidae: Current knowledge and potential applications for integrated pest management[J]. Journal of Pest Science, 2014, 87(3): 385 − 405. doi: 10.1007/s10340-014-0577-3 [15] FLATH R A, MATSUMOTO K E, BINDER R G, et al. Effect of pH on the volatiles of hydrolyzed protein insect baits[J]. Journal of agricultural and food chemistry, 1989, 37(3): 814 − 819. doi: 10.1021/jf00087a053 [16] DUYCK P F, ROUSSE P, RYCKEWAERT P, et al. Influence of adding borax and modifying pH on effectiveness of food attractants for melon fly (Diptera: Tephritidae)[J]. Journal of Economic Entomology, 2004, 97(3): 1137 − 1141. doi: 10.1093/jee/97.3.1137 [17] VARGAS R I, PROKOPY R. Attraction and feeding responses of melon flies and oriental fruit flies (Diptera: Tephritidae) to various protein baits with and without toxicants[J]. Proc. Hawaii. Entomol. Soc., 2006, 38: 49 − 60. [18] BRUCE T J A, WADHAMS L J, WOODCOCK C M. Insect host location: A volatile situation[J]. Trends in plant science, 2005, 10(6): 269 − 274. doi: 10.1016/j.tplants.2005.04.003 [19] 杜立啸, 刘杨, 王桂荣. 昆虫外周嗅觉系统信号转导机制研究进展[J]. 中国科学: 生命科学, 2016, 46(5): 573 − 583. [20] RUTA V, DATTA S R, VASCONCELOS M L, et al. A dimorphic pheromone circuit in Drosophila from sensory input to descending output[J]. Nature, 2010, 468(7324): 686 − 690. doi: 10.1038/nature09554 [21] BATES A S, SCHLEGEL P, ROBERTS R J V, et al. Complete connectomic reconstruction of olfactory projection neurons in the fly brain[J]. Current biology, 2020, 30(16): 3183 − 3199.e6. doi: 10.1016/j.cub.2020.06.042 [22] 刘伟, 王桂荣. 昆虫嗅觉中枢系统对外周信号的整合编码研究进展[J]. 昆虫学报, 2020, 63(12): 1536 − 1545. [23] WU Z Z, ZHANG H, WANG Z B, et al. Discovery of chemosensory genes in the oriental fruit fly, Bactrocera dorsalis[J]. PLoS ONE, 2015, 10(6): e0129794. doi: 10.1371/journal.pone.0129794 [24] WU Z Z, CUI Y, MA J, et al. Analyses of chemosensory genes provide insight into the evolution of behavioral differences to phytochemicals in Bactrocera species[J]. Molecular Phylogenetics and Evolution, 2020, 151: 106858. doi: 10.1016/j.ympev.2020.106858 [25] LIU Z, SMAGGHE G, LEI Z R, et al. Identification of male- and female-specific olfaction genes in antennae of the oriental fruit fly (Bactrocera dorsalis)[J]. PLoS ONE, 2016, 11(2): e0147783. doi: 10.1371/journal.pone.0147783 [26] ZHAO Z L, TIAN D, MCBRIDE C S. Development of a pan-neuronal genetic driver in Aedes aegypti mosquitoes[J]. Cell Reports Methods, 2021, 1(3): 100042. doi: 10.1016/j.crmeth.2021.100042 [27] LEYVA-DíAZ E, HOBERT O. Robust regulatory architecture of pan-neuronal gene expression[J]. Current biology, 2022, 32(8): 1715 − 1727.e8. doi: 10.1016/j.cub.2022.02.040 [28] WAGH D A, RASSE T M, ASAN E, et al. Bruchpilot, a protein with homology to ELKS/CAST, is required for structural integrity and function of synaptic active zones in Drosophila[J]. Neuron, 2006, 49(6): 833. doi: 10.1016/j.neuron.2006.02.008 [29] RIABININA O, LUGINBUHL D, MARR E, et al. Improved and expanded Q-system reagents for genetic manipulations[J]. Nature methods, 2015, 12(3): 219 − 222. doi: 10.1038/nmeth.3250 [30] KONOPKA J K, TASK D, POINAPEN D, et al. Neurogenetic identification of mosquito sensory neurons[J]. iScience, 2023, 26(5): 106690. doi: 10.1016/j.isci.2023.106690 [31] SWEENEY S T, BROADIE K, KEANE J, et al. Targeted expression of tetanus toxin light chain in Drosophila specifically eliminates synaptic transmission and causes behavioral defects[J]. Neuron, 1995, 14(2): 341 − 351. doi: 10.1016/0896-6273(95)90290-2 [32] DEITCHER D L, UEDA A, STEWART B A, et al. Distinct requirements for evoked and spontaneous release of neurotransmitter are revealed by mutations in the Drosophila gene neuronal-synaptobrevin[J]. Journal of Neuroscience, 1998, 18(6): 2028 − 39. doi: 10.1523/JNEUROSCI.18-06-02028.1998 [33] CHEN Y, HU S, WU X, et al. Synaptotagmin-1 is a bidirectional Ca2+ sensor for neuronal endocytosis[J]. PNAS, 2022, 119(20): e2111051119. doi: 10.1073/pnas.2111051119 [34] YAO K, SAMSON M, REEVES R, et al. Gene elav of Drosophila melanogaster: a prototype for neuronal-specific RNA binding protein gene family that is conserved in flies and humans[J]. Developmental Neurobiology, 1993, 24(6): 723 − 739. doi: 10.1002/neu.480240604 [35] CARRASCO J, MATEOS F, HILGERS V. A critical developmental window for ELAV/Hu-dependent mRNA signatures at the onset of neuronal differentiation[J]. Cell reports, 2022, 41(4): 111542. doi: 10.1016/j.celrep.2022.111542 [36] EMMS DM, KELLY S. OrthoFinder: phylogenetic orthology inference for comparative genomics[J]. Genome biology, 2019, 20(1): 238. doi: 10.1186/s13059-019-1832-y [37] KATOH K, STANDLEY D M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability[J]. Molecular Biology and Evolution., 2013, 30(4): 772 − 780. doi: 10.1093/molbev/mst010 [38] MINH B Q, SCHMIDT H A, CHERNOMOR O, et al. IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era[J]. Molecular Biology and Evolution., 2020, 37(5): 1530 − 1534. doi: 10.1093/molbev/msaa015 [39] WANG M, KONG L. pblat: A multithread blat algorithm speeding up aligning sequences to genomes[J]. BMC Bioinform., 2019, 20(1): 28. doi: 10.1186/s12859-019-2597-8 [40] YAMADA T. 7bgzf: Replacing samtools bgzip deflation for archiving and real-time compression[J]. Computational Biology and Chemistry, 2020, 85: 107207. doi: 10.1016/j.compbiolchem.2020.107207 [41] KIM D, PAGGI J M, PARK C, et al. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype[J]. Nature biotechnology, 2019, 37(8): 907 − 915. doi: 10.1038/s41587-019-0201-4 [42] SHUMATE A, WONG B, PERTEA G, et al. Improved transcriptome assembly using a hybrid of long and short reads with StringTie[J]. PLoS Computational Biology, 2022, 18(6): e1009730. doi: 10.1371/journal.pcbi.1009730 [43] ROBINSON J T, THORVALDSDOTTIR H, TURNER D, et al. igv. js: an embeddable JavaScript implementation of the Integrative Genomics Viewer (IGV)[J]. Bioinformatics., 2023, 39(1): btac830. doi: 10.1093/bioinformatics/btac830 [44] LIAO Y, SMYTH G K, SHI W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features[J]. Bioinformatics., 2014, 30(7): 923 − 930. doi: 10.1093/bioinformatics/btt656 [45] ROBERTSON H M, WARR C G, CARLSON J R. Molecular evolution of the insect chemoreceptor gene superfamily in Drosophila melanogaster[J]. PNAS, 2003, 100(Suppl 2): 14537 − 14542. [46] VOSSHALL L B, STOCKER R F. Molecular architecture of smell and taste in Drosophila[J]. Annual review of neuroscience, 2007, 30: 505 − 533. doi: 10.1146/annurev.neuro.30.051606.094306 [47] DAVIS F P, NERN A, PICARD S, et al. A genetic, genomic, and computational resource for exploring neural circuit function[J]. E-life, 2020, 9: e50901. [48] SANFILIPPO P, SMIBERT P, DUAN H, et al. Neural specificity of the RNA-binding protein Elav is achieved by post-transcriptional repression in non-neural tissues[J]. Development, 2016, 143(23): 4474 − 4485. doi: 10.1242/dev.141978 [49] LUO L, LIAO Y J, JAN L Y, et al. Distinct morphogenetic functions of similar small GTPases: Drosophila Drac1 is involved in axonal outgrowth and myoblast fusion[J]. Genes and development, 1994, 8(15): 1787 − 1802. doi: 10.1101/gad.8.15.1787 [50] PAULI A, ALTHOFF F, OLIVEIRA R A, et al. Cell-type-specific TEV protease cleavage reveals cohesin functions in Drosophila neurons[J]. Developmental cell, 2008, 14(2): 239 − 251. doi: 10.1016/j.devcel.2007.12.009 [51] CARCAUD J, OTTE M, GRüNEWALD B, et al. Multisite imaging of neural activity using a genetically encoded calcium sensor in the honey bee[J]. PLoS Biology, 2023, 21(1): e3001984. doi: 10.1371/journal.pbio.3001984
计量
- 文章访问数: 2
- HTML全文浏览量: 0
- 被引次数: 0