留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

香蕉枯萎病菌候选效应蛋白FoSSP80能抑制植物免疫反应

赵阳 刘爽 王志彪 伍俊宇 陈代朋 郑丽

赵阳, 刘爽, 王志彪, 伍俊宇, 陈代朋, 郑丽. 香蕉枯萎病菌候选效应蛋白FoSSP80能抑制植物免疫反应[J]. 热带生物学报, 2025, 16(1): 87-97. doi: 10.15886/j.cnki.rdswxb.20240019
引用本文: 赵阳, 刘爽, 王志彪, 伍俊宇, 陈代朋, 郑丽. 香蕉枯萎病菌候选效应蛋白FoSSP80能抑制植物免疫反应[J]. 热带生物学报, 2025, 16(1): 87-97. doi: 10.15886/j.cnki.rdswxb.20240019
ZHAO Yang, LIU Shuang, WANG Zhibiao, WU Junyu, CHEN Daipeng, ZHENG Li. Functional characterization of candidate effector FoSSP80 in Fusarium oxysporum f. sp. cubense[J]. Journal of Tropical Biology, 2025, 16(1): 87-97. doi: 10.15886/j.cnki.rdswxb.20240019
Citation: ZHAO Yang, LIU Shuang, WANG Zhibiao, WU Junyu, CHEN Daipeng, ZHENG Li. Functional characterization of candidate effector FoSSP80 in Fusarium oxysporum f. sp. cubense[J]. Journal of Tropical Biology, 2025, 16(1): 87-97. doi: 10.15886/j.cnki.rdswxb.20240019

香蕉枯萎病菌候选效应蛋白FoSSP80能抑制植物免疫反应

doi: 10.15886/j.cnki.rdswxb.20240019
基金项目: 

海南大学协同创新中心项目(XTCX2022NYB10)

海南省重点研发项目(ZDYF2022XDNY242)

国家自然科学基金地区项目(32360642)

详细信息
    第一作者:

    赵阳(1997-),男,海南大学热带农林学院2021级硕士研究生。E-mail:zy155956@163.com

    通信作者:

    陈代朋(1987-),男,讲师。研究方向:植物病理学。E-mail:chen.daipeng@163.com

    郑丽(1985-),女,教授。研究方向:植物病理学。E-mail:zhenglihappy0617@126.com

  • 中图分类号: S432.1

Functional characterization of candidate effector FoSSP80 in Fusarium oxysporum f. sp. cubense

  • 摘要: 香蕉枯萎病是香蕉的主要病害之一。香蕉枯萎病菌(Fusarium oxysporum f. sp. cubense, Foc)产生的效应蛋白在其侵染香蕉的过程中发挥了重要作用。实验室前期在Foc中筛选到候选效应蛋白FoSSP80,生物信息学分析发现FoSSP80含有信号肽、无跨膜结构域;利用酵母分泌系统证实了FoSSP80具有分泌功能;在烟草中瞬时表达能够抑制由BAX引起的细胞程序性死亡(PCD),且FoSSP80可以抑制活性氧(ROS)的积累和胼胝质的沉积;与野生型和回补菌株相比敲除突变体ΔFoSSP80在菌落形态、生长速率和分生孢子产生和致病性方面都没有显著差异。研究结果表明FoSSP80是一个经典分泌蛋白,且可以抑制植物的免疫反应。
  • [1] 李华平,李云锋,聂燕芳.香蕉枯萎病的发生及防控研究现状[J]. 华南农业大学学报, 2019, 40(5):128-136.
    [2] GHAG S B, SHEKHAWAT U K S, GANAPATHI T R.Fusarium wilt of banana:biology, epidemiology and management[J]. International Journal of Pest Management,2015, 61(3):250-263.
    [3] PLOETZ R C. Management of Fusarium wilt of banana:a review with special reference to tropical race 4[J]. Crop Protection, 2015, 73:7-15.
    [4] ATKINSON N J, URWIN P E. The interaction of plant biotic and abiotic stresses:from genes to the field[J]. Journal of Experimental Botany, 2012, 63(10):3523-3543.
    [5] JONES J D G, DANGL J L. The plant immune system[J]. Nature, 2006, 444(7117):323-329.
    [6] BOLLER T, HE S Y. Innate immunity in plants:an arms race between pattern recognition receptors in plants and effectors in microbial pathogens[J]. Science, 2009, 324(5928):742-744.
    [7] HOUTERMAN P M, SPEIJER D, DEKKER H L, et al.The mixed xylem sap proteome of Fusarium oxysporuminfected tomato plants[J]. Molecular Plant Pathology,2007, 8(2):215-221.
    [8] SCHMIDT S M, HOUTERMAN P M, SCHREIVER I, et al. MITEs in the promoters of effector genes allow prediction of novel virulence genes in Fusarium oxysporum[J]. BMC Genomics, 2013, 14:119.
    [9] REP M, VAN DER DOES H C, MEIJER M, et al. A small,cysteine-rich protein secreted by Fusarium oxysporum during colonization of xylem vessels is required for I-3-mediated resistance in tomato[J]. Molecular Microbiology,2004, 53(5):1373-1383.
    [10] HOUTERMAN P M, MA L, VAN OOIJEN G, et al. The effector protein Avr2 of the xylem-colonizing fungus Fusarium oxysporum activates the tomato resistance protein I-2 intracellularly[J]. The Plant Journal:for Cell and Molecular Biology, 2009, 58(6):970-978.
    [11] MA L, HOUTERMAN P M, GAWEHNS F, et al. The AVR2-SIX5 gene pair is required to activate I-2-mediated immunity in tomato[J]. The New Phytologist, 2015,208(2):507-518.
    [12] GAWEHNS F, HOUTERMAN P M, ICHOU F A, et al.The Fusarium oxysporum effector Six6 contributes to virulence and suppresses I-2-mediated cell death[J]. Molecular Plant-Microbe Interactions:MPMI, 2014,27(4):336-348.
    [13] HOU X, AN B, WANG Q, et al. SGE1 is involved in conidiation and pathogenicity of Fusarium oxysporum f.sp. cubense[J]. Canadian Journal of Microbiology, 2018,64(5):349-357.
    [14] AN B, HOU X, GUO Y, et al. The effector SIX8 is required for virulence of Fusarium oxysporum f. sp.cubense tropical race 4 to Cavendish banana[J]. Fungal Biology, 2019, 123(5):423-430.
    [15] GUO L, WANG J, LIANG C, et al. Fosp9, a novel secreted protein, is essential for the full virulence of Fusarium oxysporum f. sp. cubense on banana(Musa spp.) [J]. Applied and Environmental Microbiology,2022, 88(6):e0060421.
    [16] WANG Y, ZHANG X, WANG T, et al. The small secreted protein FoSsp1 elicits plant defenses and negatively regulates pathogenesis in Fusarium oxysporum f.sp. cubense(Foc4) [J]. Frontiers in Plant Science, 2022,13:873451.
    [17] WANG T, XU Y, ZHAO Y, et al. Systemic screening of Fusarium oxysporum candidate effectors reveals FoSSP17 that suppresses plant immunity and contributes to virulence[J]. Phytopathology Research, 2023, 5(1):42.
    [18] TAMURA K, STECHER G, KUMAR S. MEGA11:molecular evolutionary genetics analysis version 11[J]. Molecular Biology and Evolution, 2021, 38(7):3022-3027.
    [19] 王田,符俐盈,赵阳,等.香蕉枯萎病菌候选效应蛋白FoSSP20的鉴定和功能初探[J]. 热带生物学报, 2024,15(1):85-93.
    [20] GU B, KALE S D, WANG Q, et al. Rust secreted protein Ps87 is conserved in diverse fungal pathogens and contains a RXLR-like motif sufficient for translocation into plant cells[J]. PLoS One, 2011, 6(11):e27217.
    [21] WEI Y, LIU W, HU W, et al. The chaperone MeHSP90recruits MeWRKY20 and MeCatalase1 to regulate drought stress resistance in cassava[J]. The New Phytologist, 2020, 226(2):476-491.
    [22] DONG J, CHEN W. The role of autophagy in chloroplast degradation and chlorophagy in immune defenses during Pst DC3000(AvrRps4) infection[J]. PLoS One, 2013,8(8):e73091.
    [23] GOSWAMI R S. Targeted gene replacement in fungi using a split-marker approach[J]. Methods in Molecular Biology, 2012, 835:255-269.
    [24] YUN Y, LIU Z, ZHANG J, et al. The MAPKK FgMkk1 of Fusarium graminearum regulates vegetative differentiation, multiple stress response, and virulence via the cell wall integrity and high-osmolarity glycerol signaling pathways[J]. Environmental Microbiology, 2014, 16(7):2023-2037.
    [25] CHEN D, WANG Y, ZHOU X, et al. The Sch9 kinase regulates conidium size, stress responses, and pathogenesis in Fusarium graminearum[J]. PLoS One, 2014, 9(8):e105811.
    [26] ZHANG L, CENCI A, ROUARD M, et al. Transcriptomic analysis of resistant and susceptible banana corms in response to infection by Fusarium oxysporum f. sp.cubense tropical race 4[J]. Scientific Reports, 2019,9(1):8199.
    [27] LEE M C S, MILLER E A, GOLDBERG J, et al. Bidirectional protein transport between the ER and Golgi[J]. Annual Review of Cell and Developmental Biology, 2004,20:87-123.
    [28] LACOMME C, SANTA CRUZ S. Bax-induced cell death in tobacco is similar to the hypersensitive response[J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(14):7956-7961.
    [29] ABRAMOVITCH R B, KIM Y J, CHEN S, et al. Pseudomonas type III effector AvrPtoB induces plant disease susceptibility by inhibition of host programmed cell death[J]. The EMBO Journal, 2003, 22(1):60-69.
    [30] LI X, JIN C, YUAN H, et al. The barley powdery mildew effectors CSEP0139 and CSEP0182 suppress cell death and promote B. graminis fungal virulence in plants[J]. Phytopathology Research, 2021, 3(1):7.
    [31] LING T, VANDELLE E, BELLIN D, et al. Nitric oxide produced during the hypersensitive response modulates the plant signaling network and inhibits the pathogen's virulence machinery[J]. Nitric Oxide, 2012, 27:S9.
  • [1] 张瑶瑶, 郑玉华, 孙建波, 朱白婢, 熊国如, 李淑霞, 彭明, 李春强.  镰刀菌枯萎病拮抗菌LCQ1801的分离鉴定、生防作用及其在有机基质中的生长情况 . 热带生物学报, 2025, 16(1): 71-78. doi: 10.15886/j.cnki.rdswxb.20230023
    [2] 余曦, 李春霞, 陶均.  Ⅲ型效应蛋白XopG调控水稻白叶枯病菌的致病力及其在植物细胞中的定位分析 . 热带生物学报, 2025, 16(): 1-10. doi: 10.15886/j.cnki.rdswxb.20240058
    [3] 黄思豪, 王丽霞, 刘永霞, 姜成君, 宋可欣, 赵艳, 何应对.  基于机器学习算法预测香蕉产量 . 热带生物学报, 2025, 16(1): 21-30. doi: 10.15886/j.cnki.rdswxb.20240031
    [4] 刘丽娟, 刘玉涵, 方雨萧, 单佳馨, 左明浩, 缪卫国, 李潇.  橡胶树白粉病菌效应蛋白CSEP00565的筛选及其作用机理初步研究 . 热带生物学报, 2025, 16(): 1-11. doi: 10.15886/j.cnki.rdswxb.20230143
    [5] 陈艳, 王娅玲, 李春芳, 王安邦, 李羽佳, 李敬阳.  香蕉品种多组分主成分分析与营养价值评估 . 热带生物学报, 2024, 15(6): 709-717. doi: 10.15886/j.cnki.rdswxb.20240064
    [6] 吕荣婷, 刘新月, 伍巧慧, 龚文坤, 王蓓蓓.  香蕉间作绿肥对土壤氮转化及叶片酶活性的影响 . 热带生物学报, 2024, 15(4): 407-413. doi: 10.15886/j.cnki.rdswxb.20240004
    [7] 王田, 符俐盈, 赵阳, 刘爽, 张玉芳, 陈代朋, 郑丽.  香蕉枯萎病菌候选效应蛋白FoSSP20的鉴定和功能初探 . 热带生物学报, 2024, 15(1): 85-93. doi: 10.15886/j.cnki.rdswxb.20230045
    [8] 许靖云, 周宇晨, 黄硕, 韩谦.  广州管圆线虫免疫调控机制及诊断技术研究进展 . 热带生物学报, 2023, 14(1): 60-70. doi: 10.15886/j.cnki.rdswxb.2023.01.001
    [9] 聂雪纯, 李思鹏, 刘玉涵, 缪卫国, 李潇.  橡胶树HbLFG2蛋白对植物免疫防卫的调控机理 . 热带生物学报, 2023, 14(4): 380-388. doi: 10.15886/j.cnki.rdswxb.2023.04.005
    [10] 杜艳楠, 王萌, 马建强, 张宇, 梁晓宇.  植物病原真菌早期检测技术及其在橡胶树炭疽病预测预报中的应用 . 热带生物学报, 2021, 12(1): 124-131. doi: 10.15886/j.cnki.rdswxb.2021.01.018
    [11] 孙鹏, 刘满意, 王蓓蓓.  香蕉秸秆不同还田模式对土壤微生物群落的影响 . 热带生物学报, 2021, 12(1): 57-62. doi: 10.15886/j.cnki.rdswxb.2021.01.008
    [12] 于婧, 李敏, 高兆银, 弓德强, 张绍刚, 洪小雨, 花静静, 胡美姣.  抑制火龙果果腐病病菌桃吉尔霉的植物精油筛选(简报) . 热带生物学报, 2021, 12(1): 72-74. doi: 10.15886/j.cnki.rdswxb.2021.01.010
    [13] 扶艳萍, 漆艳香, 谢艺贤, 彭军, 曾凡云, 张欣.  香蕉灰纹病的病原鉴定及其生物学特性 . 热带生物学报, 2021, 12(1): 63-71. doi: 10.15886/j.cnki.rdswxb.2021.01.009
    [14] 刘满意, 王禹童, 孙铭泽, 李荣, 王蓓蓓.  套作白三叶草对香蕉枯萎病发病率及土壤微生物群落的影响 . 热带生物学报, 2021, 12(2): 219-227. doi: 10.15886/j.cnki.rdswxb.2021.02.011
    [15] 程度, 戎伟, 梅双双.  效应蛋白OhEF 2正调控拟南芥对橡胶树白粉菌的感病性 . 热带生物学报, 2021, 12(1): 75-82. doi: 10.15886/j.cnki.rdswxb.2021.01.011
    [16] 黄文枫, 胡艳平, 朱白婢.  海南薄皮甜瓜枯萎病病原菌鉴定及抗病砧木的筛选 . 热带生物学报, 2020, 11(3): 310-313. doi: 10.15886/j.cnki.rdswxb.2020.03.008
    [17] 梁峻玮, 曾凡云, 漆艳香, 彭军, 张欣, 谢培兰, 谢艺贤.  香蕉枯萎病菌4号生理小种中性海藻糖酶NTH1基因敲除和功能分析 . 热带生物学报, 2020, 11(2): 200-209, 216. doi: 10.15886/j.cnki.rdswxb.2020.02.010
    [18] 徐亚, 杨振, 李琼亮, 李新国.  2009—2018年国家自然科学基金资助香蕉相关研究的情况 . 热带生物学报, 2020, 11(4): 487-491. doi: 10.15886/j.cnki.rdswxb.2020.04.012
    [19] 李恒, 畅文军, 陈汉清, 乔帆, 曾会才.  香蕉枯萎镰刀菌4号生理小种mon1基因敲除转化子的表型分析及致病力测定 . 热带生物学报, 2019, 10(2): 127-134. doi: 10.15886/j.cnki.rdswxb.2019.02.005
    [20] 林珠凤, 吉训聪, 梁延坡, 赵海燕, 陈海燕.  亚致死剂量杀虫剂与昆虫免疫反应的研究进展 . 热带生物学报, 2017, 8(4): 482-487,494. doi: 10.15886/j.cnki.rdswxb.2017.04.017
  • 加载中
  • 计量
    • 文章访问数:  42
    • HTML全文浏览量:  6
    • PDF下载量:  0
    • 被引次数: 0
    出版历程
    • 收稿日期:  2024-02-01
    • 修回日期:  2024-03-08
    • 刊出日期:  2025-03-15

    香蕉枯萎病菌候选效应蛋白FoSSP80能抑制植物免疫反应

    doi: 10.15886/j.cnki.rdswxb.20240019
      基金项目:

      海南大学协同创新中心项目(XTCX2022NYB10)

      海南省重点研发项目(ZDYF2022XDNY242)

      国家自然科学基金地区项目(32360642)

      作者简介:

      赵阳(1997-),男,海南大学热带农林学院2021级硕士研究生。E-mail:zy155956@163.com

      通讯作者: 陈代朋(1987-),男,讲师。研究方向:植物病理学。E-mail:chen.daipeng@163.com; 郑丽(1985-),女,教授。研究方向:植物病理学。E-mail:zhenglihappy0617@126.com
    • 中图分类号: S432.1

    摘要: 香蕉枯萎病是香蕉的主要病害之一。香蕉枯萎病菌(Fusarium oxysporum f. sp. cubense, Foc)产生的效应蛋白在其侵染香蕉的过程中发挥了重要作用。实验室前期在Foc中筛选到候选效应蛋白FoSSP80,生物信息学分析发现FoSSP80含有信号肽、无跨膜结构域;利用酵母分泌系统证实了FoSSP80具有分泌功能;在烟草中瞬时表达能够抑制由BAX引起的细胞程序性死亡(PCD),且FoSSP80可以抑制活性氧(ROS)的积累和胼胝质的沉积;与野生型和回补菌株相比敲除突变体ΔFoSSP80在菌落形态、生长速率和分生孢子产生和致病性方面都没有显著差异。研究结果表明FoSSP80是一个经典分泌蛋白,且可以抑制植物的免疫反应。

    English Abstract

    赵阳, 刘爽, 王志彪, 伍俊宇, 陈代朋, 郑丽. 香蕉枯萎病菌候选效应蛋白FoSSP80能抑制植物免疫反应[J]. 热带生物学报, 2025, 16(1): 87-97. doi: 10.15886/j.cnki.rdswxb.20240019
    引用本文: 赵阳, 刘爽, 王志彪, 伍俊宇, 陈代朋, 郑丽. 香蕉枯萎病菌候选效应蛋白FoSSP80能抑制植物免疫反应[J]. 热带生物学报, 2025, 16(1): 87-97. doi: 10.15886/j.cnki.rdswxb.20240019
    ZHAO Yang, LIU Shuang, WANG Zhibiao, WU Junyu, CHEN Daipeng, ZHENG Li. Functional characterization of candidate effector FoSSP80 in Fusarium oxysporum f. sp. cubense[J]. Journal of Tropical Biology, 2025, 16(1): 87-97. doi: 10.15886/j.cnki.rdswxb.20240019
    Citation: ZHAO Yang, LIU Shuang, WANG Zhibiao, WU Junyu, CHEN Daipeng, ZHENG Li. Functional characterization of candidate effector FoSSP80 in Fusarium oxysporum f. sp. cubense[J]. Journal of Tropical Biology, 2025, 16(1): 87-97. doi: 10.15886/j.cnki.rdswxb.20240019
    参考文献 (31)

    目录

      /

      返回文章
      返回