-
主持人:廖卫国
由咖啡驼孢锈菌(Hemileia vastratrix)寄生引起的咖啡叶锈病在世界咖啡种植区普遍发生,是导致咖啡落叶和减产的关键病害,流行年份咖啡落叶率高达50%以上,减产率可达30%~50%,导致的经济损失高达10亿~20亿美元[1-3]。该病于1861年在非洲维多利亚湖畔首次发现。云南省于1956年开始推广种植小粒咖啡Coffea arabica,同年就发现了咖啡叶锈病[4]。病原菌H. vastratrix以锈孢子进行无性繁殖,而有性繁殖阶段至今未明确[5]。国内外学者对咖啡叶锈病的研究主要集中在农业景观生态系统及气候变化对咖啡叶锈病的影响[6-7]、危害特点、替代寄主植物[8]、生理小种[9]、化学防控[10]以及重寄生真菌[3, 11]等方面。咖啡产业作为云南省乡村振兴的重要产业,2020年全省种植咖啡面积8.91万ha,产量13.51万t,农业产值24.46亿元,是我国最大的小粒咖啡种植区,而干热区保山市则是云南省小粒咖啡主产区之一,咖啡种植面积8 741 ha,产量2.222 5万t,产值40 227.25万元[4]。自1956年以来,咖啡叶锈病一直是危害该地区的重要病害。海拔作为一个综合性生态因子,会引起光、温、水以及土壤等因子的综合变化,进而影响病虫害,但至今没有开展过不同海拔梯度对咖啡叶锈病及其重寄生菌影响的研究。基于此,本课题组通过为期1年对干热区咖啡叶锈病及其重寄生菌的发生动态进行监测,以期揭示海拔梯度对咖啡叶锈病及其重寄生菌的影响,进而为干热区不同海拔梯度咖啡园咖啡叶锈病的精准预测及防控策略的制定提供科学依据,也为咖啡叶锈病的生物防控提供重要数据支撑。
Effects of altitude on coffee leaf rust (Hemileia vastatrix) in the dry-hot region
-
摘要: 为明确干热区咖啡叶锈病的危害症状和周年动态及不同海拔梯度对咖啡叶锈病和重寄生菌的影响,对咖啡叶锈病症状进行田间观察和周年动态监测,并对700~1 500 m共9个海拔梯度的咖啡叶锈病及重寄生真菌发生情况开展调查。结果显示,在干热区,咖啡叶锈病全年发生,有3个危害高峰期,分别为12月、2月和4月,其中12月的危害最严重。咖啡叶锈病危害与海拔高度成显著相关,海拔1 500 m的咖啡叶锈病危害显著高于700~1 400 m的8个海拔梯度的;海拔1 400~1 500 m的咖啡叶锈病全年均有发生。在11月至次年6月发现了咖啡叶锈病的重寄生现象,寄生率有2个高峰期,即1月和3月,重寄生率分别为(20.19±5.44)%和(25.70±5.72)%;重寄生率与海拔高度成正比,海拔1 400 m和1 500 m的重寄生率显著高于800~1 300 m的7个海拔梯度的。以上结果表明,在干热区,海拔梯度对咖啡叶锈病产生了显著性影响,重寄生与咖啡叶锈病发生具明显迟滞性,在高海拔地区咖啡叶锈病的重寄生率超过20%。Abstract: In order to clarify the harmful symptoms and annual dynamics of coffee leaf rust in dry-hot regions, as well as the impact of altitude gradients on coffee leaf rust and mycoparasitic fungi, the symptoms of coffee leaf rust were observed in the field and its annual dynamics were monitored. An investigation was conducted on the occurrence of coffee leaf rust and mycoparasitic fungi in Arabica coffee plantations at 9 gradients of altitude from 700 to 1 500 m in the dry-hot region of Baoshan, Yunnan. The results show that the coffee leaf rust occurs throughout the year, with the peaks being in December, February and April, and most severe in December in the dry-hot region. The infection of coffee leaf rust is significantly correlated with altitude. The infection of coffee leaf rust at an altitude of 1 500 meters is significantly higher than that at the other eight altitude gradients from 700 m to 1 400 m. Coffee leaf rust occurs all the year round at an altitude of 1 400 m to 1 500 m, and does not occur for more than 2 months at an altitude of 700 m to 1 300 m. The mycoparasitism of coffee leaf rust was found from November to June, and had two peaks, in January with a mycoparasitization rate of (20.19±5.44)% and in March (25.70±5.72)%, respectively. The mycoparasitization increased with the altitude, and the mycoparasitization rates at 1 400 m and 1 500 m were significantly higher than those at the other seven altitude gradients ranging from 800 m to 1 300 m. All these results indicate that altitude has a significant impact on coffee leaf rust, and that the occurrence of mycoparasites and coffee leaf rust is significantly delayed in the dry-hot region. In the areas of high altitude, the mycoparasitization rate of coffee leaf rust exceeds 20%, and the mycoparasitic fungi shows promise as a biocontrol agent of the coffee leaf rust.
-
Key words:
- altitude /
- coffee leaf rust /
- mycoparasitic fungus /
- annual dynamics /
- dry-hot region
注释:1) 叶静 -
图 4 咖啡叶锈病重寄生菌
A:无重寄生菌;B:重寄生菌周年发生动态;C: 有重寄生菌;D:不同海拔高度咖啡叶锈病重寄生菌的发生情况
Fig. 4 Mycoparasite fungus of coffee leaf rust
A: No mycoparasite fungus; B: Annual occurrence dynamics of mycoparasite fungus; C: With mycoparasite fungus; D: Occurrence of mycoparasite fungus of coffee leaf rust at different altitudes
-
[1] MCTAGGART A R, SHIVAS R G, VAN DER NEST M A, et al. Host jumps shaped the diversity of extant rust fungi (Pucciniales) [J]. The New Phytologist, 2016, 209(3): 1149-1158. [2] ZAMBOLIM L. Current status and management of coffee leaf rust in Brazil [J]. Tropical Plant Pathology, 2016, 41(1): 1-8. [3] SALCEDO-SARMIENTO S, AUCIQUE-PÉREZ C E, SILVEIRA P R, et al. Elucidating the interactions between the rust Hemileia vastatrix and a Calonectria mycoparasite and the coffee plant [J]. iScience, 2021, 24(4): 102352. [4] 李贵平, 胡发广, 黄家雄. 小粒种咖啡生产新技术 [M]. 昆明: 云南科技出版社, 2020. [5] KOUTOULEAS A, JØRGEN LYNGS JØRGENSEN H, JENSEN B, et al. On the hunt for the alternate host of Hemileia vastatrix [J]. Ecology and Evolution, 2019, 9(23): 13619-13631. [6] AVELINO J, VÍLCHEZ S, SEGURA-ESCOBAR M B, et al. Shade tree Chloroleucon eurycyclum promotes coffee leaf rust by reducing uredospore wash-off by rain [J]. Crop Protection, 2020, 129: 105038. [7] DE C ALVES M, DE CARVALHO L G, POZZA E A, et al. Ecological zoning of soybean rust, coffee rust and banana black sigatoka based on Brazilian climate changes [J]. Procedia Environmental Sciences, 2011, 6: 35-49. [8] BARKA G D, CAIXETA E T, FERREIRA S S, et al. In silico guided structural and functional analysis of genes with potential involvement in resistance to coffee leaf rust: a functional marker based approach [J]. PLoS One, 2020, 15(7): e0222747. [9] KOSARAJU B, SANNASI S, MISHRA M K, et al. Assessment of genetic diversity of coffee leaf rust pathogen Hemileia vastatrix using SRAP markers [J]. Journal of Phytopathology, 2017, 165(7/8): 486-493. [10] LOPES U P, ZAMBOLIM L, SOUZA NETO P N, et al. Silicon and triadimenol for the management of coffee leaf rust [J]. Journal of Phytopathology, 2014, 162(2): 124-128. [11] JAMES T Y, MARINO J A, PERFECTO I, et al. Identification of putative coffee rust mycoparasites via single-molecule DNA sequencing of infected pustules [J]. Applied and Environmental Microbiology, 2016, 82(2): 631-639. [12] KUMAR A, SREEDHARAN SP, SHETTY NP, et al. Developing sustainable disease resistance in coffee[J]. Plant Pathogen Resistance Biotechnology, 2016, 5: 217-243. [13] 钟娇娇, 陈杰, 陈倩, 等. 秦岭山地天然次生林群落MRT数量分类、CCA排序及多样性垂直格局 [J]. 生态学报, 2019, 39(1): 277-285. [14] JACKSON D, SKILLMAN J, VANDERMEER J. Indirect biological control of the coffee leaf rust, Hemileia vastatrix, by the entomogenous fungus Lecanicillium lecanii in a complex coffee agroecosystem [J]. Biological Control, 2012, 61(1): 89-97. [15] DEL CARMEN H RODRÍGUEZ M, EVANS H C, DE ABREU L M, et al. New species and records of Trichoderma isolated as mycoparasites and endophytes from cultivated and wild coffee in Africa [J]. Scientific Reports, 2021, 11: 5671.