-
棕榈蓟马(Thrips palmi Karny)属缨翅目(Thysanoptera)蓟马科(Thripida),是外来入侵物种之一[1-2],在苏门达腊岛的烟草上首次被发现[3],20世纪70年代迅速在世界各地大面积发生,目前在加勒比海和欧、亚、非、美、大洋洲均有分布[4-6]。1976年,中国首次在广东的蔬菜作物上发现棕榈蓟马[7-8],目前在香港、海南、云南、湖南、浙江、广东、西藏、四川、广西等地均有分布[9]。此外,在山东、湖北、上海、江苏等地也发现棕榈蓟马的发生分布[10]。棕榈蓟马有直接危害(取食、产卵)和间接危害(传播植物病毒)两种为害方式。棕榈蓟马利用自身的锉吸式口器来吸取植物组织器官内的营养成分以满足其自身生长需要,为害严重时可使蔬菜大量减产(减产率:茄科20%~30%,豆科20%~35%,葫芦科5%~40%)[9]。棕榈蓟马还可以传播多种植物病毒病[11-12]。本研究从棕榈蓟马形态性状、生态性状、发生危害、抗药性现状和综合防治技术五个方面,对其研究现状进行综述,旨在帮助果蔬产业人员更有效地防治该虫害,促进我国瓜果蔬菜产业健康发展。
-
棕榈蓟马体型微小,幼虫通常不作鉴定虫态;成虫呈黄褐色或黑色,体长1~2 mm[2],一般通过制作棕榈蓟马成虫标本进行形态鉴定[13-15]。
-
棕榈蓟马具有呈白色针点状的初产卵痕,初产卵为白色透明状的长椭圆形卵粒,0.2 mm左右;卵孵化后,卵痕呈现黄褐色[9]。
-
棕榈蓟马属过渐变态昆虫,初孵若虫呈白色,复眼红色;1~2龄若虫淡黄色,无单眼;3龄若虫(预蛹),体淡黄白色,触角向前伸展;4龄若虫又称蛹,体黄色,3只单眼,触角沿身体向后伸展。
-
棕榈蓟马通常以雌成虫作鉴定虫态。雌成虫体色呈金黄色,头近方形,3只单眼呈三角形排列,与豇豆大蓟马和西花蓟马的主要区别特征之一是棕榈蓟马单眼间鬃位于单眼间连线外缘;而豇豆大蓟马和西花蓟马的单眼间鬃位于连线内测。触角共7节,第三节与第四节上有明显的叉状感觉锥,前胸后缘鬃有6根,中央2根较其余4根稍长。后胸盾片具1对钟形感觉器,腹节末端具完整后缘梳。翅着生有细长缘毛,前翅10根上脉鬃,11根下脉鬃。
-
棕榈蓟马的生活周期包括卵、若虫、预蛹、蛹、成虫5个虫态。成虫将卵分散产于植株幼嫩组织;1、2龄若虫行动敏捷,植株幼嫩组织是其最爱取食的部位;3龄若虫(预蛹)不再进行取食,并在地下3~5 cm的土层内化蛹;4龄若虫(蛹)不食不动,在土层度过蛹期;成虫羽化后向地上爬行,通常在花内、内膛叶片等部位活动[9]。
-
蓟马类昆虫有多种生殖方式,仅极少数可进行卵胎生[16-17]。棕榈蓟马主要生殖方式为产雄孤雌生殖和两性生殖,在恒温条件下(24.5 ~ 25.5 ℃),棕榈蓟马进行孤雌生殖或两性生殖时的产卵量并没有明显差别[18]。
-
棕榈蓟马的主要寄主是节瓜和茄子。在节瓜叶不同部位棕榈蓟马的发生分布存在显著差异,且明显偏向于心叶方向聚集,在节瓜瓜棚内棕榈蓟马在向光面的群体数量明显多于背光面[19]。相关研究表明,棕榈蓟马成虫和若虫分别喜好分布于茄子植株的上层叶片和中层叶片,且喜好聚集于同一叶片的叶面和叶背[20]。
-
棕榈蓟马对光源及颜色均具有一定趋避性,成、若虫具有强烈趋光性和趋嫩性[9],由此印证棕榈蓟马在向光面的群体数量明显多于背光面这一结论。成虫在土内羽化后就会循着光线向地上爬行,然后聚集在植株的心叶、嫩芽等幼嫩组织内取食为害。
棕榈蓟马对颜色同样表现一定程度的趋避性,但对不同颜色的趋向性存在明显差异,对蓝色表现出最强烈的嗜好性,对黑色表现出最弱的嗜好性[21]。研究证明,银色地膜覆盖的辣椒产量最高,但若想趋避棕榈蓟马成虫及阻断其若虫在土中化蛹也可使用黑色地膜[22]。
-
棕榈蓟马可通过多种形式进行传播扩散,因此可造成大面积爆发性危害,其成虫十分活跃、能飞善跳,自身可随着气流传播扩散。此外,还可夹在植株的花、嫩茎、嫩枝等夹缝中,借助人为传播或寄主植物的果实、繁殖材料等携带传播。
-
棕榈蓟马是以锉吸式口器取食植物幼嫩组织或于其中产卵形成直接危害[23],受害叶片卷曲皱缩,变形并老化;花器变色或小斑点显现;果实锈褐色疤痕现于表皮、畸形甚至脱落,果皮硬化,严重时形成疮疤。棕榈蓟马的直接危害破坏了植株的营养器官和生殖器官,使植物光合作用异常,降低植物观赏价值,造成一定经济损失。
-
棕榈蓟马以传播植物病毒的方式对植物造成间接危害,且间接危害的损失明显大于直接危害[23-24],可传播植物病毒有花生黄斑病毒[25]、番茄斑萎病毒、凤仙花坏死斑病毒[26]等,另发现棕榈蓟马亦可传播一种新的甜瓜黄斑病毒[27],此外,棕榈蓟马还具有传播辣椒褪绿病毒的潜在可能性[28]。
-
由于长期使用化学农药防治棕榈蓟马,使得棕榈蓟马对环境的适应能力不断增强,目前棕榈蓟马已对多种化学药剂产生了不同水平的抗药性,例如对有机氯类、有机磷类和拟除虫菊酯类药剂的抗性逐渐增强,防治效果日渐下降[29-31]。分析总结棕榈蓟马对不同药剂的抗性水平,表明其抗药性产生原因主要与解毒酶、靶标位点敏感性、表皮穿透力等3个因素有关。
-
解毒酶代谢活性增强是造成棕榈蓟马抗药性增强的主要原因。解毒酶系含多功能氧化酶(Multi-Function Oxidase)、水解酶(Hydrolase)、谷胱甘肽−S−转移酶(GlutathioneS-transferases)和酯酶(Esterase)。
有研究表明蓟马酯酶在抗性种群中活性显著高于敏感种群,证明蓟马对药剂抗性的产生与酯酶的高水平活性有关[32],而ZHAO等研究发现西花蓟马敏感品系中的酯酶活性略高于二嗪磷的抗性品系[33],所以目前酯酶在昆虫抗性机制中的作用仍存在较大争议。
相关研究证明蓟马类昆虫对有机磷类、拟除虫菊酯类和氨基甲酸酯类药剂的抗性产生的原因是由于多功能氧化酶的代谢活性增强[30-31, 34]。此外,蓟马类昆虫体内的解毒酶代谢活性增强也与氯氰菊酯类药剂的抗性产生有关[35]。对吡虫啉、阿维菌素、甲维盐等药剂的抗药性产生也与多功能氧化酶活性增强密切相关[36]。
-
蓟马的抗药性产生还与靶标位点的改变、敏感性下降及靶标活性变化相关。神经膜上钠通道是菊酯类药剂的作用靶标,蓟马对拟除虫菊酯、DDT、茚虫威和多种神经毒剂产生抗性是由于钠通道同源结构域Ⅱ的S6片段上的单个氨基酸突变(L到P)所致[37],且昆虫抗性产生的基础物质是T929I编码的氨基酸[38]。乙酰胆碱酯酶是有机磷、氨基甲酸酯类药剂的靶标位点,昆虫乙酰胆碱酯酶敏感性下降和活性的升高是有机磷、氨基甲酸酯类药剂抗性产生的原因[26]。此外,目前推测靶标位点乙酰胆碱受体的改变是由于蓟马类害虫对多杀菌素产生抗性的原因[39-40]。
-
表皮穿透力下降引起害虫抗药性上升主要针对触杀型药剂而言。药剂的活性和作用效果被昆虫表皮结构和药剂理化性质共同影响。迄今为止昆虫抗药性与表皮穿透力的相关性研究较少,主要原因是田间多使用内吸型杀虫剂来防治蓟马类昆虫[26]。
-
以山东棕榈蓟马为例,对山东省3个地区(寿光、泰安、济南)2010—2019年的温室棕榈蓟马进行调研,发现这3个地区棕榈蓟马对不同药剂的抗药性水平不同[41]。
寿光种群总体对药剂产生最高水平抗性,对氯氟氰菊酯、噻虫嗪、吡虫啉及甲氨基阿维菌素苯甲酸盐药剂表现中水平抗性,对多杀菌素药剂表现低水平抗性;济南种群总体对药剂产生了最低水平的抗药性,产生低水平抗性的药剂仅有氯氟氰菊酯,具有产生低水平抗性趋势的药剂有多杀菌素、噻虫嗪和吡虫啉,而对甲氨基阿维菌素苯甲酸盐药剂则表现出敏感状态;泰安种群总体对药剂产生了中等水平抗药性,对吡虫啉药剂表现中水平抗性,对甲氨基阿维菌素苯甲酸盐药剂表现低水平抗性,对氯氟氰菊酯、多杀菌素及噻虫嗪药剂有产生低水平抗性趋势。
张安盛对山东商河品系的棕榈蓟马成虫经浸叶法进行毒力测定,分析得到,多杀菌素和甲氨基阿维菌素苯甲酸盐对棕榈蓟马表现较高毒力[41]。
-
棕榈蓟马的防治措施主要有农业、生物、物理及化学措施。为防止使用单一药剂防治棕榈蓟马造成其产生抗药性,应采取有害生物综合治理措施对其进行防治。
-
选育抗棕榈蓟马的节瓜、黄瓜和茄子等寄主植物、培育健壮植株以提高植株的抗逆性、恶化棕榈蓟马生存环境、清除田间病株杂草等措施均能有效降低棕榈蓟马的危害。此外,可根据棕榈蓟马的入土化蛹习性,使用地膜覆盖法阻断棕榈蓟马入土化蛹,使棕榈蓟马脱水死亡[42],此法可有效降低棕榈蓟马虫口密度。利用施有杀虫剂的诱虫植物如开花期菊花等可更加有效地减少害虫数量[43]。此外,早期害虫预警也是重要的防控措施,番茄斑萎病毒症状在矮牵牛被带毒蓟马取食后几天内就会显现[26],据此可以种植指示植物来进行预警。
-
利用天敌生物来防治棕榈蓟马可以有效减少化学药剂使用,捕食性天敌、寄生蜂、病原微生物为棕榈蓟马主要的天敌生物[44-53](表1)。
表 1 防治棕榈蓟马的天敌生物
Table 1. Natural enemies of Thrips palmi
天敌种类 Natural enemy groups 天敌物种 Natural enemy species 捕食性 蝽类 O. similis (南方小花蝽)[44]、O. sauteri (东亚小花蝽)[45]、Wollastoniella rotunda[46]、Campylimma chinensi (中华微刺盲蝽)[47-48] 蓟马类 Scolothrips takahashii (塔六点蓟马)、Franklinothrips vespiformis (胡蜂形长角蓟马)[49] 寄生性 寄生蜂类 Campylom sp.、Megaphragma sp. (赤眼蜂)[49] 病原微生物 线虫类 Steinernema bicornutum (斯氏线虫)、Heterorhabditis indica (异小杆线虫)[50] 真菌类 Beauveria bassiana (球孢白僵菌)[51]、Metarhizium anisopliae (绿僵菌)[52]、Verticillium lecanii (蜡蚧轮枝菌)[53] -
防治棕榈蓟马的物理措施主要是利用其对温度的适应性及对光线及颜色的趋避性采取的防治措施。首先,棕榈蓟马对温差十分敏感,在其入土化蛹并羽化后向地上爬出时,通风降低温室内温度可使该虫死亡,如此反复几次后死亡率可达90%以上[54]。其次,棕榈蓟马成、若虫都对光线和蓝色表现出强的趋向性,可采取夜晚悬挂诱捕灯,白天放置蓝色粘虫板等措施来进行捕杀。影响诱捕量的主要因素有粘虫板颜色和引诱剂的添加剂量两方面,蓝色粘虫板诱捕效果相比其他颜色效果较好[55]。在棕榈蓟马的高发期若上述措施均不能有效地防治棕榈蓟马,可采取反射紫外线覆盖物和化学防治联合运用的措施来进行防治[56]。
-
针对棕榈蓟马的化学防治,吴建辉等在广东地区试验田的监测结果表明,10%溴虫腈防治效果较好[57]。陈青在海南试验田的监测结果发现,对棕榈蓟马防效较好的药剂有25%吡虫啉·辛硫磷乳油、5%吡虫啉·丁硫克百威乳油和2.5%高渗吡虫啉等[58]。Cermeli等发现阿维菌素、吡虫啉、吡丙醚、杀螟丹、氟虫脲、除虫脲对若虫的防效依次减弱,仲丁威和胺丙畏对成虫的防效较好[59]。
在化学防治棕榈蓟马时,应适时、精准用药并综合运用多种防治措施。合理轮用或化学药剂混用可有效降低药剂选择压力并延缓害虫抗药性发展。化学药剂混合使用时应注意药剂间的拮抗作用,部分氨基甲酸酯类药剂和拟除虫菊酯类杀虫剂存在交互抗性[60-61],在吡蚜酮、吡虫啉与阿维菌素间均发生[62]拮抗作用,在氨基甲酸酯和有机磷类药剂间产生交互抗性[63]。
-
棕榈蓟马体型微小且善于隐藏,此类小型昆虫的防治已成为国际难题。目前中国棕榈蓟马的抗药性日渐增强,有关蓟马类害虫的防治虽已经取得了一定的进展[64],但大多使用单一防治措施,未能有效运用有害生物综合治理措施。推−拉(Push-Pull)策略是基于害虫−天敌一体化的昆虫行为调控技术,为有害生物综合治理(IPM)奠定了良好的研究基础[65]。在田间防治棕榈蓟马时,可以充分应用推−拉策略,将棕榈蓟马的替代寄主植物种植在田间农作物的外围,利用替代作物的吸引力将棕榈蓟马“推”出农田圈,同时在农田作物中放置可以吸引天敌生物的物质,将棕榈蓟马的天敌生物“拉”进农田圈,如此一来,可以十分有效地降低棕榈蓟马的种群密度。此外,应做好棕榈蓟马的预防和抗药性监测工作、加强对天敌昆虫的引进和利用、建立我国的综合防控措施以及新型农药的研究和应用体系,力求严格控制棕榈蓟马发生危害,促进我国瓜果蔬菜种植业健康发展。
Research Progress in the Invasive Pest Thrips palmi Karny
-
摘要: 棕榈蓟马(Thrips palmi Karny)属于个体微小但繁殖力强的外来入侵害虫,主要以直接取食、产卵和间接传播植物病毒的形式对寄主植物产生危害。目前已发现棕榈蓟马分布于我国13个省份,危害多种作物,导致作物生长缓慢、瓜果畸形,经济损失惨重。笔者从棕榈蓟马形态性状、生态性状、发生危害、抗药性现状和综合防治技术五个方面,对其研究现状进行综述,旨在帮助果蔬产业人员更有效地防治该虫害,促进我国瓜果蔬菜产业健康发展。
-
关键词:
- 棕榈蓟马(Thrips palmi Karny) /
- 形态性状 /
- 生态性状 /
- 危害 /
- 综合防治
Abstract: Thrips palmi Karny is a small but highly productive invasive pest insect and causes damages to the host plants mainly through direct feeding, oviposition and/or indirect transmission of a virus. T. palmi has been found distributed in 13 provinces of China, and infects a variety of crops, leading to slow plant growth of the crops and abnormal growth of melon and fruit and hence heavy economic losses. A review of T. palmi was made in morphological identification characteristics, ecological characteristics, occurrence hazards, drug resistance status and comprehensive control techniques in combination with our recent research. The purpose of this review is to enable technicians and growers of fruits and vegetables to have a deeper understanding of T. palmi so that they can prevent and control T. palmi more effectively to avoid more serious economic losses and to maintain the healthy development of fruit and vegetable sectors in China for high-quality production of fruits and vegetables and hence good economic benefits.-
Key words:
- Thrips palmi Karny /
- morphology /
- ecologic traits /
- Harm /
- Integrated management
-
表 1 防治棕榈蓟马的天敌生物
Table 1 Natural enemies of Thrips palmi
天敌种类 Natural enemy groups 天敌物种 Natural enemy species 捕食性 蝽类 O. similis (南方小花蝽)[44]、O. sauteri (东亚小花蝽)[45]、Wollastoniella rotunda[46]、Campylimma chinensi (中华微刺盲蝽)[47-48] 蓟马类 Scolothrips takahashii (塔六点蓟马)、Franklinothrips vespiformis (胡蜂形长角蓟马)[49] 寄生性 寄生蜂类 Campylom sp.、Megaphragma sp. (赤眼蜂)[49] 病原微生物 线虫类 Steinernema bicornutum (斯氏线虫)、Heterorhabditis indica (异小杆线虫)[50] 真菌类 Beauveria bassiana (球孢白僵菌)[51]、Metarhizium anisopliae (绿僵菌)[52]、Verticillium lecanii (蜡蚧轮枝菌)[53] -
[1] 张维球. 农业昆虫学[M]. 北京: 中国农业出版社, 1990. [2] 袁伟方, 罗宏伟. 蔬菜蓟马防治技术研究进展[J]. 热带农业科学, 2014, 34(9): 28. [3] WATERHOUSE D F, NORRIS K R. Biological control: pacific prospect[M]. Melbourne, Australia: Inkata Press, 1987: 454. [4] 韩云, 唐良德, 吴建辉. 蓟马类害虫综合治理研究进展[J]. 中国农学通报, 2015, 31(22): 163 − 174. doi: 10.11924/j.issn.1000-6850.casb15030049 [5] CANNON R J C, MATTHEWS I, COLLINS D W. A review of the pest status and control options for Thrips palmi [J]. Crop Protection, 2007, 26(8): 1089 − 1098. doi: 10.1016/j.cropro.2006.10.023 [6] KAJITA H, HIROSE Y, TAKAGI M, et al. Host plants and abundance of Thrips palmi Karny (Thysanoptera: Thripidae), an important pest of vegetables in southeast Asia [J]. Applied Entomology and Zoology, 1996, 31(1): 87 − 94. doi: 10.1303/aez.31.87 [7] 张维球. 广东蔬菜常见蓟马种类及为害情况调查[J]. 昆虫知识, 1976, 13(3): 83 − 85. [8] RUEDA A, BADENES-PEREZ F R, SHELTON A M. Developing economic thresholds for onion thrips in Honduras [J]. Crop Protection, 2007, 26 (8): 1099 − 1107. doi: 10.1016/j.cropro.2006.10.002 [9] 王泽华, 石宝才, 宫亚军, 等. 棕榈蓟马的识别与防治[J]. 中国蔬菜, 2013(13): 28 − 29. doi: 10.3969/j.issn.1000-6346.2013.13.012 [10] 秦玉洁, 梁广文, 吴伟坚. 节瓜蓟马的发生危害和防治策略[J]. 植物保护, 2002, 8(4): 21 − 22. doi: 10.3969/j.issn.0529-1542.2002.04.007 [11] 胡庆玲. 中国蓟马科系统分类研究(缨翅目: 锯尾亚目)[D]. 杨凌: 西北农林科技大学, 2013. [12] 韩运发. 中国经济昆虫志(第五十五卷: 缨翅目)[M]. 北京: 科学出版社, 1997: 18 − 29. [13] 张维球, 曾玲. 4种花蓟马的鉴别[J]. 植物检疫, 2004, 18(3): 149 − 152. doi: 10.3969/j.issn.1005-2755.2004.03.008 [14] 刘宁, 任立, 张润志. 西花蓟马的鉴别及其与近缘种的区别[J]. 昆虫知识, 2005, 42(3): 345 − 347. [15] 陈洪俊, 张友军. 西花蓟马的鉴别与检疫[J]. 植物检疫, 2005, 19(1): 33 − 34. doi: 10.3969/j.issn.1005-2755.2005.01.011 [16] MAJID M B. Asystematic study of Thysanoptera in Iran (Hexapoda: Insecta)[D]. 杭州: 浙江大学, 2011: 32 − 44. [17] MORITZ G, MOUND L A, MORRIS D C. Pest Thrips of the World: Visual and Molecular Identification of Pest Thrips[CD]. Australia Brisbane: Centre for Biological Information Technology, 2004. [18] 吴佳教, 张维球. 节瓜蓟马两性生殖与孤雌生殖研究[J]. 昆虫天敌, 1995, 17(2): 51 − 54. [19] TSAI J H, YU E B, WEBB S E. Effects of host plant and temperature on growth and reproduction of Thrips palmi (Thysanoptera: thripidae) [J]. Environmental Entomology, 1995, 24: 1598 − 1603. doi: 10.1093/ee/24.6.1598 [20] 吴佳教, 张维球, 梁广文. 节瓜蓟马生物学特性的研究[J]. 植物保护学报, 1996, 23(1): 13 − 16. doi: 10.3321/j.issn:0577-7518.1996.01.003 [21] 陈华平, 贝亚维, 顾秀慧. 棕榈蓟马(Thrips palmi)对不同颜色粘卡的嗜好及其蓝色粘卡诱虫量的研究[J]. 应用生态学报, 1997, 8(3): 335 − 337. doi: 10.3321/j.issn:1001-9332.1997.03.023 [22] SALA S J. Evaluation of cultural practices to control Thrips palmi (Thysanoptera: Thripidae) on green pepper [J]. Entomotropica, 2004, 19(1): 39 − 46. [23] REYNAUD P V, PIZZOL BALMÈS J. Thrips hawaiiensis (Morgan, 1913) (Thysanoptera: Thripidae), an Asian pest thrips now established in Europe [J]. Journal Compilation, 2008, 38(1): 155 − 160. [24] 谢永辉, 李正跃, 张宏瑞. 烟蓟马研究进展[J]. 安徽农业科学, 2011, 390(5): 2683 − 2685. doi: 10.3969/j.issn.0517-6611.2011.05.064 [25] 赵钢. 蔬菜棕榈蓟马灾变规律及监控技术研究[D]. 扬州: 扬州大学, 2003: 6 − 17. [26] 付步礼, 曾东强, 刘奎, 等. 蓟马类害虫抗药性研究进展[J]. 农学学报, 2014, 4(3): 28 − 34. doi: 10.3969/j.issn.1007-7774.2014.03.007 [27] KATO K, HANADA K, KAMEY A, et al. Melon yellow spot virus: distinct species of the Genus to spovirus isolated from melon [J]. Phytopathology, 2000, 90(4): 422 − 427. doi: 10.1094/PHYTO.2000.90.4.422 [28] JONES D R. Plant virus transmitted by thrips [J]. European Journal of Plant Pathology, 2005, 113(2): 119 − 157. doi: 10.1007/s10658-005-2334-1 [29] ZHAO G, LIU W, BROWN J M. Insecticide resistance in field and laboratory strains of western flower thrips (Thysanoptera: Thripidae) [J]. Journal of Economic Entomology, 1995, 88 (5): 1164 − 1170. doi: 10.1093/jee/88.5.1164 [30] IMMARAJU J A, PAINE T D, BETHKE J A, et al. Western flower thrips (Thysanoptera: Thripidae) resistance to insecticides in coastal California greenhouses [J]. Journal of Economic Entomology, 1992, 85(1): 9 − 14. doi: 10.1093/jee/85.1.9 [31] BROADBENT A B, PREE D J. Resistance to insecticides in populations of Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae) from greenhouses in the Niagara Region of Ontario [J]. Canadian Entomologist, 1997, 129: 907 − 913. doi: 10.4039/Ent129907-5 [32] MAYMÓ A C, CERVERA A, SARABIA R, et al. Evaluation of metabolic detoxifying enzyme activities and insecticide resistance in Frankliniella occidentalis [J]. Pest Management Science, 2002, 58(9): 928 − 934. doi: 10.1002/ps.558 [33] ZHAO G, LIU W, KNOWLES C O. Mechanism associated with diazinon resistance in western flower thrips [J]. Pesticide Biochemistry and Physiology, 1994, 49(1): 13 − 23. doi: 10.1006/pest.1994.1030 [34] ZHAO G, LIU W, KNOWLES C O. Fenvalerate resistance mechanisms in western flower thrips (Thysanoptera: Thripidae) [J]. Journal of Economic Entomology, 1995, 88(3): 531 − 535. doi: 10.1093/jee/88.3.531 [35] 王圣印, 张安盛, 李丽莉, 等. 西花蓟马田间种群对常用杀虫剂的抗性现状及防治对策[J]. 昆虫学报, 2014, 57(5): 621 − 630. [36] BAO W X, SONODA S. Resistance to cypermethrin in melon thrips, Thrips palmi (Thysanoptera: Thripidae), is conferred by reduced sensitivity of the sodium channel and CYP450-mediated detoxification [J]. Applied Entomology and Zoology, 2012, 47(4): 443 − 448. doi: 10.1007/s13355-012-0141-7 [37] SODERLUND D M, KNIPPLE D C. The molecular biology of knockdown resistance to pyrethroid insecticide [J]. Insect Biochemistry and Molecular Biology, 2003, 33(6): 563 − 577. doi: 10.1016/S0965-1748(03)00023-7 [38] BAO W X, KATAOKA Y, KOHARA Y, et al. Genomic analyses of sodium channel α-subunit genes from strains of melon thrips, Thrips palmi, with different sensitivities to cypermethrin [J]. Pesticide Biochemistry Physiology, 2014, 108: 80 − 85. doi: 10.1016/j.pestbp.2013.12.009 [39] BIELZA P, QUINTO V, CONTRERAS J, et al. Resistance to spinosad in the western flower thrips Frankliniella occidentalis in greenhouses of south-eastern Spain [J]. Pest Management Science, 2007, 63(7): 682 − 687. doi: 10.1002/ps.1388 [40] ZHANG S Y, KONO S, MURAI T, et al. Mechanisms of resistance to spinosad in the western flowers thrips, Frankliniella occidentalis [J]. Insect Science, 2008, 15(2): 125 − 132. doi: 10.1111/j.1744-7917.2008.00192.x [41] 张安盛, 庄乾营, 周仙红, 等. 日光温室防治棕榈蓟马药剂筛选[J]. 植物保护, 2013, 39(6): 180 − 183. doi: 10.3969/j.issn.0529-1542.2013.06.035 [42] AGUILAR-FENOLLOSA E, JACAS J A. Effect of ground cover management on Thysanoptera (thrips) in clementine mandarin orchards [J]. Journal of Pest Science, 2013, 86(3): 469 − 481. doi: 10.1007/s10340-013-0494-x [43] BUITENHUIS R, SHIPP J L, JANDRICIC S, et al. Effectiveness of insecticide-treated and non-treated trap plants for the management of Frankliniella occidentalis(Thysanoptera: Thripidae) in greenhouse ornamentals [J]. Pest Management Science, 2007, 63(9): 910 − 917. doi: 10.1002/ps.1426 [44] KIM D I, PARK J D, KIM S G, et al. Biological control of Thrips palmi (Thysanoptera: Thripidae) with Orius strigicollis (Hemiptera: Anthocoridae) on cucumber in plastic houses in the southern region of Korea [J]. Journal of Asia-Pacific Entomology, 2004, 7(3): 311 − 315. doi: 10.1016/S1226-8615(08)60232-0 [45] NAKASHIMA Y, HIROSE Y. Effects of prey availability on longevity, prey consumption, and egg production of the insect predators, Orius sauteri and O. tantillus (Hemiptera: Anthocoridae) [J]. Annals of the Entomological Society of America, 1999, 92(4): 537 − 541. doi: 10.1093/aesa/92.4.537 [46] UEFUNE M, NAKASHIMA Y, TAGASHIRA E, et al. Response of Wollastoniella rotunda (Hemiptera: Anthocoridae) to volatiles from eggplants infested with its prey Thrips palmi and Tetranychus kanzawai: Preyspecies and density effects [J]. Biological Control, 2010, 54(1): 19 − 22. doi: 10.1016/j.biocontrol.2010.02.008 [47] WANG C L. The predacious capacity of two natural enemies of Thrips palmi Karny, Campylimma chinensis Schuh (Hemiptera: Miridae) and Orius sauteri (Poppius) (Hemiptera: Anthocoridae) [J]. Plant Protection Bulletin, 1994, 36(2): 141 − 154. [48] 余金咏, 沈叔平, 吴伟坚, 等. 释放中华微刺盲蝽防治茄子害虫的研究[J]. 华南农业大学学报, 2005, 26(4): 27 − 29. doi: 10.3969/j.issn.1001-411X.2005.04.007 [49] 王清玲. 台湾蓟马之种类[J]. 中华农业研究, 1994, 43(4): 453 − 466. [50] EBSSA L, BORGEMEISTER C, POEHLING H M. Effectiveness of different species/strains of entomopathogenic nematodes for control of western flower thrips (Frankliniella occidentalis) at various concentrations, host densities, and temperatures [J]. Biological Control, 2004, 29(1): 145 − 154. doi: 10.1016/S1049-9644(03)00132-4 [51] SKINNER M, GOULI S, FRANK C E, et al. Management of Frankliniella occidentalis (Thysanoptera: Thripidae) with granular formulations of entomopathogenic fung [J]. Biological Control, 2012, 63(3): 246 − 252. doi: 10.1016/j.biocontrol.2012.08.004 [52] NGAKOU A, TAMÒ M, PARH I A, et al. Management of cowpea flower thrips, Megalurothrips sjostedti (Thysanoptera, Thripidae), in Cameroon [J]. Crop Protection, 2008, 27(3): 481 − 488. [53] 秦玉洁, 吴伟坚. 虫生真菌对节瓜蓟马种群的控制作用[J]. 中国植保导刊, 2004, 24(7): 5 − 7. doi: 10.3969/j.issn.1672-6820.2004.07.001 [54] 张玉坤, 刘去虹, 徐风勇. 保护地蔬菜棕黄蓟马发生特点及综合防治技术[J]. 吉林蔬菜, 1998(4): 3 − 5. [55] 任向辉, 王运兵, 崔建新, 等. 色板对葱蓟马诱捕量的BP神经网络模型预测[J]. 安徽农业科学, 2009, 37(31): 15294 − 15296. doi: 10.3969/j.issn.0517-6611.2009.31.090 [56] REITZ S R, YEARBY E, FUNAERBURK J, et al. Integrated management tactics for Frankliniella thrips (thysanoptera: Thripidae) in field-grown pepper [J]. Journal of Economic Entomology, 2003, 96(4): 1201 − 1214. doi: 10.1603/0022-0493-96.4.1201 [57] 吴建辉, 林莉. 10%除尽悬浮剂防治节瓜蓟马田间药效试验[J]. 广东农业科学, 2008(2): 63 − 64. doi: 10.3969/j.issn.1004-874X.2008.02.020 [58] 陈青. 防治节瓜蓟马、桃蚜高效药剂筛选[J]. 植物保护, 2007, 30(1): 77 − 79. [59] CERMELI M, MONTAGNEA A, CASTROY R, et al. Chemical control of Thrips palmi Karny (Thysanoptera: Thripidae) on field beans (Phaseolus vulgaris L.) [J]. Rev Fac Agron(LUZ), 2002, 19(1): 1 − 8. [60] ESPINOSA P J, BIELZA P, CONTRERAS J, et al. Field and laboratory selection of Frankliniella occidentalis (Pergande) for resistance to insecticides [J]. Pest Management Science, 2002, 58(9): 920 − 927. doi: 10.1002/ps.573 [61] BIELZA P, QUINTO V, GRAVALOS C. Lack of fitness costs of insecticide resistance in the Frankliniella occidentalis (Thysanoptera: Thripidae) [J]. Journal of Economic Entomology, 2008, 101(2): 499 − 503. doi: 10.1093/jee/101.2.499 [62] 陈雪林, 孙蓉, 杜予州, 等. 阿维菌素与三种杀虫剂对西花蓟马的联合毒力[J]. 植物保护, 2011, 37(5): 206 − 209. doi: 10.3969/j.issn.0529-1542.2011.05.042 [63] BIELZA P. Insecticide resistance management strategies against the western flower thrips Frankliniella occidentalis [J]. Pest Management Science, 2008, 64(11): 1131 − 1138. doi: 10.1002/ps.1620 [64] 吕要斌, 张治军, 吴青君, 等. 外来入侵害虫西花蓟马防控技术研究与示范[J]. 应用昆虫学报, 2011, 48(3): 488 − 496. doi: 10.7679/j.issn.2095-1353.2011.086 [65] COOK S M, KHAN Z R, PICKETT J A. The use of push-pull strategies in integrated pest management [J]. Annual Review of Entomology, 2007, 52(1): 375 − 400. doi: 10.1146/annurev.ento.52.110405.091407 -