留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

植物花青素生物合成途径相关基因研究进展及其基因工程修饰

赵德勇

赵德勇. 植物花青素生物合成途径相关基因研究进展及其基因工程修饰[J]. 热带生物学报, 2012, 3(1): 92-98. doi: 10.15886/j.cnki.rdswxb.2012.01.004
引用本文: 赵德勇. 植物花青素生物合成途径相关基因研究进展及其基因工程修饰[J]. 热带生物学报, 2012, 3(1): 92-98. doi: 10.15886/j.cnki.rdswxb.2012.01.004
ZHAO De-yong. Advances in research of genes involved in anthocyanin biological synthesis in plant and the genetic modification of the pathway[J]. Journal of Tropical Biology, 2012, 3(1): 92-98. doi: 10.15886/j.cnki.rdswxb.2012.01.004
Citation: ZHAO De-yong. Advances in research of genes involved in anthocyanin biological synthesis in plant and the genetic modification of the pathway[J]. Journal of Tropical Biology, 2012, 3(1): 92-98. doi: 10.15886/j.cnki.rdswxb.2012.01.004

植物花青素生物合成途径相关基因研究进展及其基因工程修饰

doi: 10.15886/j.cnki.rdswxb.2012.01.004
详细信息
    第一作者:

    赵德勇(1984-),男,山东乐陵人,中国科学院研究生院2011级植物育种学专业博士研究生.

  • 中图分类号: Q786

Advances in research of genes involved in anthocyanin biological synthesis in plant and the genetic modification of the pathway

  • 摘要: 对植物花青素生物合成及调控基因的研究进展、基因工程在调控花青素合成途径中的应用进行了综述。植物花青素生物合成属次生代谢途径,对该途径关键酶基因的调控可降低或提高目标化合物的产量,可通过调控植物次生代谢的方式对植物进行遗传改良。对植物通过积累花青素来适应紫外线辐射、防卫害虫及真菌侵害的分子机制进行研究,有助于培育抗病、抗逆的植物新品种。
  • [1] HUITS H S,GERATS A G,KREIKE M M,et al.Genetic control of dihydroflavonol 4-reductase gene expression in Petuniahybrida[J].Plant Journal,1994,6(3):295-310.
    [2] MO Y,NAGEL C,TAYLOR L P.Biochemical complementation of chalcone synthase mutants defines a role for flavonols infunctional pollen[J].Proceedings of the National Academy of Science of the USA,1992,89(15):7213-7217.
    [3] BIEZA K,LOIS R.An arabidopsis mutant tolerant to lethal ultraviolet-B levels shows constitutively elevated accumulation offlavonoids and other phenolics[J].Plant Physiology,2001,126(3):1105-1115.
    [4] WISEMAN B R,SNOOK M E,WIDSTROM N W.Feeding responses of the corn earworm larvae(Lepidoptera:Noctuidae)oncorn silks of varying flavone content[J].Journal of Economic Entomology,1996,89(4):1040-1044.
    [5] NICHOLSON R L,HAMMERSCHMIDT R.Phenolic compounds and their role in disease resistance[J].Annual review ofPhytopathology,1992,30:369-389.
    [6] DIXON R A,STEELE C L.Flavonoids and isoflavonoids-a gold mine for metabolic engineering[J].Trends in Plant Science,1999,4(10):394-400.
    [7] GOTO T,KONDO T.Structure and molecular stacking of anthocyanins-flower color variation[J].Angewandte Chemie Interna-tional Edition in English,1991,30(1):17-33.
    [8] KALT W,DUFOUR D.Health functionality of blueberries[J].Hort Technology,1997(7):216–221.
    [9] KATSUBE N,IWASHITA K,TSUSHIDA T,et al.Induction of apoptosis in cancer cells by Bilberry(Vaccinium myrtillus)and the anthocyanins[J].Journal of Agricutural and Food Chemistry,2003,51(1):68-75.
    [10] KREUZALER F,RAGG H,FAUTZ E,et al.UV-Induction of chalcone synthase mRNA in cell suspension cultures ofPetroselinum hortense[J].Proceedings of the National Academy of Science of the USA,1983,80(9):2591-2593.
    [11] URSULA N K,ELLEN B,JRGEN B,et a1.Chalcone synthase genes in plants:A tool to study evolutionary relationship[J].Journal of Mo1ecular Evo1ution,1987,26(3):213-225.
    [12] 王金玲,顾红雅.CHS基因的分子进化研究现状[M]∥李承森.植物科学进展:第3卷.北京:高等教育出版社,施普林格出版社,2000:l7-24.
    [13] HERRMARM A,SCHUIZ W,HAHLBROCK K.Two alleles of the single-copy chalcone synthase gene in parsley differ by atransposon-like element[J].Molecular&General Genetics,1988,212(1):93-98.
    [14] FEINBAUM R L,AUSUBEL F M.Transcriptional regulation of the Arabidopss thaliana chalcone synthase gene[J].Molecu-lar and Cellular Bio1ogy,1988,8(5):1985-1992.
    [15] WIENAND U,SOMMMER H,SCHWARZ Z,e t a1.A general method to identify plant structural genes among genomic DNAclones using transposable element induced mutations[J].Molecular&General Genetics,1982,187(2):l95-201.
    [16] SOMMMER H,SAEDLER H.Structure of the chalcone synthase of Antirrhinum majus[J].Molecular&General Genetics,1986,202(3):429-434.
    [17] RYDER T B,HEDRICK S A,BELL J N,et a1.Organization and differential activation of a gene family encoding the plantdefence enzyme chalcone synthase in Phaseolus vulgris[J].Mo1ecular&General Genetics,1987,210(2):219-233.
    [18] 林泉.色素基因的表达和调控[M]∥许智宏,刘春明.植物发育的分子机理.北京:科学出版社,1998:l07-1l9.
    [19] HARBORNE J B,WILLIAMS C A.Advances in flavonoid research since 1992[J].Phytochemistry,2000,55(6):481-504.
    [20] WINKEL-SHIRLEY B.Flavonoid biosynthesis.A colorful model for genetics,biochemistry,cell biology,and biotechnology[J].Plant Physiology,2001,126(2):485-493.
    [21] MEHDY M C,LAMB C J.Chalcone isomerase cDNA cloning and mRNA induction by fungal elicitor,wounding and infection[J].The EMBO Journal,1987,6(6):l527-l533.
    [22] NORIMOTO S,TOSHIO A,SHUSEI S,et a1.A cluster of genes encodes the two types of chalcone isomerase involved in thebiosynthesis of general falavonoids and legume specific 5-deoxy(iso)Flavonoid in Lotus Japonicus[J].Plant Physiology,2003,131(3):941-951.
    [23] VANTUNEN A J,KOES R E,SPEIT C E,et a1.Cloning of two chalcone flavone isomerase genes from Petunia hybrida:co-ordinate 1ight-regulated and differential expression of flavonoid genes[J].The EMBO Journal,1988,7(5):l257-l262.
    [24] MARTIN C,PRESCOTT A,MACKAY S,et a1.Control of anthocyanin biosynthesis in flowers of Antirrhinum majus[J].ThePlant Journal,1991,l(1):37-49.
    [25] HENKEL J,FORKMANN G,MIN B W,et a1.Anthocyanin biosynthesis in distinct genotypes of China aster(Callistephuschinensis)[J].Acta Horticu1turae,2000,508:213-2l4.
    [26] DEBOO G B,ALBERTSEN M C,TAYLOR L P.Flavanone-3-beta-hydroxylase transcripts and flavonol accumulations aretemporally coordinate in Maize anthers[J].The Plant Journal,1995,7(5):703-713.
    [27] HELLER W,FORKMANN G,BRITSCH L,et al.Enzymatic reduction of(+)-dihydroflavonols to favan-3,4-cis-diols withflower extracts from Matthiola incana and its role in anthocyanin biosynthesis[J].Planta,1985,165(2):284-287.
    [28] SHIMADA N,SASAKI R,SATO S,et al.A comprehensive analysis of six dihydroflavonol 4-reductases encoded by a genecluster of the Lotus japonicus genome[J].Journal of Experimental Botany,2005,56(419):2573-2585.
    [29] MENSSEN A,HHMANN S,MARTIN W,et al.The En/Spm transposable element of Zea mays contains splice sites at thetemin generating a novel intron from sSpm element in the A2 gene[J].The EMBO Journal,1990,9(10):3051-3057.
    [30] ROSATI C,CADIC A,DURON M,et al.Molecular characterization of the anthocyanidin synthase gene in Forsythia interme-dia reveals organ-specific expression during flower development[J].Plant Science,1999,149(1):73-79.
    [31] HONDA T,SAITO N.Recent progress in the chemistry of polyacylated anthocyanins as flower color pigments[J].Heterocy-cles,2002,56:633-692.
    [32] MARTIN C,GERATS T.Control of pigment biosynthesis genes during petal development[J].Plant Cell,1993,5(10):1253-1264.
    [33] BRUGLIERA F,HOLTON T A,STEVENSON T W,et al.Isolation and characterization of a cDNA clone corresponding tothe Rt locus of Petunia hybrida[J].Plant J,1994(5):81-92.
    [34] KROON J,SOUER E,GRAAFF A,et al.Cloning and structural analysis of the anthocyanin pigmentation locus Rt of Petuniahybrida:characterization of insertion sequences in two mutant alleles[J].The Plant Journal,1994,5(1):69-80.
    [35] HOLTON T A,CORNISH E C.Genetics and biochemistry of anthocyanin biosynthesis[J].Plant Cell,1995,7(7):1071-1083.
    [36] TOHGE T,NISHIYAMA Y,HIRAI M Y,et al.Functional genomics by integrated analysis of metabolome and transcriptomeof Arabidopsis plants over-expressing a MYB transcription factor[J].The Plant Journal,2005,42(2):218-235.
    [37] MORITA Y,HOSHINO A,KIKUCHI Y,et al.Japanese morning glory dusky mutants displaying reddish-brown or purplish-gray flowers are deficient in a novel glycosylation enzyme for anthocyanin biosynthesis,UDP-glucose:anthocyanidin 3-O-glu-coside-2″-O-glucosyl-transferase,due to 4-bp insertions in the gene[J].The Plant Journal,2005,42(3):353-363.
    [38] MARTIN C,GERATS T.The control of flower coloration[C]∥JORDAN B R.The molecular biology of flowering.Wallingford:C.A.B.International,1993:219-255.
    [39] MOL J,GROTEWOLD E,KOES R.How genes paint flowers and seeds[J].Trends in Plant Science,1998,3(6):212-217.
    [40] NESI N,DEBEAUJON I,JOND C,et al.The TT8 gene encodes a basic helix-loop-helix domain protein required for expres-sion of DFR and BAN genes in Arabidopsis siliques[J].Plant Cell,2000,12(10):1863-1878.
    [41] PELLETIER M K,BURBULIS I E,WINKEL-SHIRLEY B.Disruption of specific flavonoid genes enhances the accumulationof flavonoid enzymes and end-products in Arabidopsis seedlings[J].Plant molecular biology,1999,40(1):45-54.
    [42] HOSHINO A,ABE Y,SAITO N,et al.The gene encoding flavanone 3-hydroxylase is expressed normally in the pale yellowflowers of the Japanese morning glory carrying the speckled mutation which produce neither flavonol nor anthocyanin but accu-mulate chalcone,aurone and flavanone[J].Plant Cell Physiology,1997,38(8):970-974.
    [43] HOSHINO A,MORITA Y,CHOI J D,et al.Spontaneous mutations of the flavonoid 3'-hydroxylase gene conferring reddishflowers in the three morning glory species[J].Plant Cell Physiology,2003,44(10):990-1001.
    [44] TIFFIN P,MILLER R E,RAUSHER M D.Control of expression patterns of anthocyanin structural genes by two loci in thecommon morning glory[J].Genes&Genetic Systems,1998,73:105-110.
    [45] PARK K I,CHOI J D,HOSHINO A,et al.An intragenic tandem duplication in a transcriptional regulatory gene for anthocy-anin biosynthesis confers pale-colored flowers and seeds with fine spots in Ipomoea tricolor[J].The Plant Journal,2004,38(5):840-849.
    [46] WINKEL-SHIRLEY B.It takes a garden.How work on diverse plant species has contributed to an understanding of flavonoidmetabolism[J].Plant Physiology,2001,127(4):1399-1404.
    [47] KOES R,VERWEIJ W,QUATTROCCHIO F.Flavonoids:a colorful model for the regulation and evolution of biochemicalpathways[J].Trends in Plant Science,2005,10(5):236-242.
    [48] RAMSAY N A,GLOVER B J.MYB-bHLH-WD40 protein complex and the evolution of cellular diversity[J].Trends in PlantScience,2005,10(2):63-70.
    [49] LUDWIG S R,WESSLER S R.MAIZE R gene family:Tissue-specific helix-loop-helix proteins[J].Cell,1990,62(5):849-851.
    [50] GOFF S A,CONE K C,CHANDLER V L.Functional analysis of the transcriptional activator encoded by the maize B gene:evidence for a direct functional interaction between two classes of regulatory proteins[J].Genes&Development,1992,6(5):864-875.
    [51] CONE K C,COCCIOLONE S M,BURR F A,et al.Maize anthocyanin regulatory gene Pl is a duplicate of C1 that functionsin the plant[J].Plant cell,1993,5(12):1795-1805.
    [52] CHANDLER V L,RADICELLA J P,ROBBINS T P,et al.Two regulatory genes of the maize anthocyanin pathway are ho-mologous:isolation of B utilizing R genomic sequences[J].Plant Cell,1989,1(12):1175-1183.
    [53] CAREY C C,STRAHLE J T,SELINGER D A,et al.Mutations in the pale aleurone color1 regulatory gene of the Zea maysanthocyanin pathway have distinct phenotypes relative to the functionally similar TRANSPARENT TESTA GLABRA1 gene inArabidopsis thaliana[J].Plant Cell,2004,16(2):450-464.
    [54] PAZ-ARES J,GHOSAL D,WIENAND U,et al.The regulatory c1 locus of Zea mays encodes a protein with homology tomyb proto-oncogene products and with structural similarities to transcriptional activators[J].The EMBO Journal,1987,6(12):3553-3558.
    [55] QUATTROCCHIO F,WING J,VAN DER WOUDE K,et al.Molecular analysis of the anthocyanin2 gene of petunia and itsrole in the evolution of flower color[J].Plant Cell,1999,11(8):1433-1444.
    [56] BOREVITZ J O,XIA Y,BLOUNT J,et al.Activation tagging identifies a conserved MYB regulator of phenylpropanoid[J].Plant Cell,2000,12(12):2383-2394.
    [57] MEYER P,HEIDMANN I,FORKMANN G,et al.A new petunia flower color generated by transformation of a mutant witha maize gene[J].Nature,1987,330:677-678.
    [58] VAN DERKROL A R,LENTING P E,VEENSTRA J,et a1.An antisense chalcone synthase gene in transgenic plants inhib-its flower pigmentation[J].Nature,1988,333:866-869.
    [59] 邵莉,李毅,杨美珠,等.查尔酮合酶基因对转基因植物花色和育性的影响[J].植物学报,1996,38(7):517-524.
    [60] ROSATI C,DURON M,CADIC A,et al.Transformation of Forsythia×intermedia cv.‘Spring Glory’with two flavonoidpathway genes leads to anthocyanin synthesis in petals at early flowering stages[J].Polyphenols Communication,2000(1):57-58.
    [61] FUKUSAKI E,KAWASAKI K,KAJIYAMA S,et al.Flower color modulations of torenia hybrida by downregulation of chal-cone synthase genes with RNA interference[J].Journal of Biotechnology,2004,111(3):229-240.
    [62] TANAKA Y,KATSUMOTO Y,BRUGLIERA F,et al.Genetic engineering in floriculture[J].Plant Cell,Tissue and OrganCulture,2005,80(1):1-24.
    [63] WISMAN E,HARTMANN U,SAGASSER M,et al.Knock-out mutants from an En-1 mutagenized Arabidopsis thaliana pop-ulation generate phenylpropanoid biosynthesis phenotype[J].Proceedings of the National Academy of Science of the USA,1998,95:12432-12437.
    [64] YU O,SHI J,HESSION A O,et al.Metabolic engineering to increase isoflavone biosynthesis in soybean seed[J].Phyto-chemistry,2003,63(7):753-763.
    [65] REDDY A M,REDDY V S,SCHEFFLER B E,et al.Novel transgenic rice overexpressing anthocyanidin synthase accumu-lates a mixture of flavonoids leading to an increased antioxidant potential[J].Metabolic Engineering,2007,9(1):95-111.
  • [1] 翁可欣, 张明亮, 李力.  微生物合成5-羟基色氨酸的研究进展 . 热带生物学报, 2023, 14(1): 42-49. doi: 10.15886/j.cnki.rdswxb.2023.01.016
    [2] 王正磊, 刘凯扬, 袁琳琳, 李芬, 吴少英.  斑翅果蝇解毒代谢相关基因的鉴定与分析 . 热带生物学报, 2023, 14(6): 660-667. doi: 10.15886/j.cnki.rdswxb.20230009
    [3] 高雪, 劳广术, 谭峥, 方渝凯, 刘文波, 靳鹏飞, 缪卫国.  贝莱斯芽孢杆菌HN-2次生代谢产物处理下黄单胞菌(Xoo)的转录组分析 . 热带生物学报, 2023, 14(4): 389-398. doi: 10.15886/j.cnki.rdswxb.2023.04.006
    [4] 吴钟解, 唐佳, 蔡文启, 唐凯, 闫智聪, 陈石泉, 周智.  海南岛东海岸珊瑚礁生态系统中抗生素抗性基因的赋存特征 . 热带生物学报, 2022, 13(5): 464-471. doi: 10.15886/j.cnki.rdswxb.2022.05.006
    [5] 王颖, 吴红芬, 张颖, 汪刘浩, 那威, 吴科榜.  文昌鸡中脂联素受体CDH13基因的表达 . 热带生物学报, 2022, 13(6): 558-561. doi: 10.15886/j.cnki.rdswxb.2022.06.003
    [6] 石婕, 符雪影, 吴强, 梁清干, 朱国鹏, 祝志欣.  甘薯叶片的抗氧化活性和相关成分比较 . 热带生物学报, 2021, 12(4): 466-472. doi: 10.15886/j.cnki.rdswxb.2021.04.009
    [7] 姜乃琪, 钟圣赟, 余雪标.  五指山低地次生林乔灌优势种关联程度分析 . 热带生物学报, 2020, 11(4): 479-486. doi: 10.15886/j.cnki.rdswxb.2020.04.011
    [8] 武新丽, 韦双双, 裴业春, 赵景锋, 王大勇.  反相高效液相色谱法对小鼠血清中基因重组人促肾上腺皮质激素前体及其代谢物的测定 . 热带生物学报, 2019, 10(1): 83-88. doi: 10.15886/j.cnki.rdswxb.2019.01.014
    [9] 王牌, 苟志辉, 农寿千, 黄川腾, 林玲, 余雪标.  海南中部丘陵区鸭脚木次生林群落种间的关联性 . 热带生物学报, 2018, 9(4): 409-417. doi: 10.15886/j.cnki.rdswxb.2018.04.007
    [10] 贾佳, 陈华美, 王艳梅, 邵璐滢, 刘晓兰, 李从发, 刘四新.  乙醇对不同菌种合成纤维素的影响及高产菌株对乙醇的敏感性和耐受性 . 热带生物学报, 2018, 9(2): 198-202. doi: 10.15886/j.cnki.rdswxb.2018.02.011
    [11] 马文婷, 吴友根, 胡征波, 张军锋, 于靖.  诺丽内生真菌的分离鉴定及其次生代谢产物的抗氧化活性 . 热带生物学报, 2017, 8(4): 424-430. doi: 10.15886/j.cnki.rdswxb.2017.04.09
    [12] 黄晓纯, 陈偿, 李颖颖, 田雨顺, 谢媚.  两个溶藻弧菌胞外多糖合成基因簇的生物信息学分析 . 热带生物学报, 2017, 8(3): 255-266. doi: 10.15886/j.cnki.rdswxb.2017.03.003
    [13] 衣雪洁, 张华, 何毛贤.  马氏珠母贝硫酸软骨素合成酶1基因的生物矿化功能 . 热带生物学报, 2017, 8(4): 377-382. doi: 10.15886/j.cnki.rdswxb.2017.04.001
    [14] 崔岩, 王佩, 孔凡栋, 梅文莉, 郭志凯, 陈惠琴, 戴好富.  角果木内生真菌Cladosporium cladosporioides JG-12次生代谢产物及其生物活性 . 热带生物学报, 2017, 8(1): 29-36. doi: 10.15886/j.cnki.rdswxb.2017.01.005
    [15] 彭宝丰, 王英, 高和琼, 庄南生.  橡胶素基因家族4个成员在橡胶树染色体上的定位 . 热带生物学报, 2016, 7(3): 318-324. doi: 10.15886/j.cnki.rdswxb.2016.03.007
    [16] 郇恒福, 周健民, 段增强, 王火焰, 高艳芳.  2种施肥模式对次生盐渍化温室土壤及蔬菜养分含量的影响 . 热带生物学报, 2014, 5(4): 339-347. doi: 10.15886/j.cnki.rdswxb.2014.04.006
    [17] 廖文彬, 彭明.  木薯赤霉素途径DELLA蛋白基因克隆及其对干旱胁迫的响应 . 热带生物学报, 2012, 3(4): 298-304. doi: 10.15886/j.cnki.rdswxb.2012.04.004
    [18] 阮孟斌, 于晓玲, 彭明.  棉花蔗糖合成酶3基因第1个内含子在基因表达中的作用 . 热带生物学报, 2011, 2(4): 291-296. doi: 10.15886/j.cnki.rdswxb.2011.04.010
    [19] 李小溪, 问亚琴, 李春兰, 潘秋红.  低温对葡萄果实莽草酸途径入口酶及后分支酸途径关键酶基因表达的影响 . 热带生物学报, 2011, 2(3): 250-255. doi: 10.15886/j.cnki.rdswxb.2011.03.016
    [20] 彭军, 黄俊生.  植物内源小RNA及其介导的基因沉默途径 . 热带生物学报, 2011, 2(2): 187-192. doi: 10.15886/j.cnki.rdswxb.2011.02.002
  • 加载中
  • 计量
    • 文章访问数:  3
    • HTML全文浏览量:  0
    • PDF下载量:  0
    • 被引次数: 0
    出版历程
    • 收稿日期:  2012-01-18
    • 刊出日期:  2012-03-25

    植物花青素生物合成途径相关基因研究进展及其基因工程修饰

    doi: 10.15886/j.cnki.rdswxb.2012.01.004
      作者简介:

      赵德勇(1984-),男,山东乐陵人,中国科学院研究生院2011级植物育种学专业博士研究生.

    • 中图分类号: Q786

    摘要: 对植物花青素生物合成及调控基因的研究进展、基因工程在调控花青素合成途径中的应用进行了综述。植物花青素生物合成属次生代谢途径,对该途径关键酶基因的调控可降低或提高目标化合物的产量,可通过调控植物次生代谢的方式对植物进行遗传改良。对植物通过积累花青素来适应紫外线辐射、防卫害虫及真菌侵害的分子机制进行研究,有助于培育抗病、抗逆的植物新品种。

    English Abstract

    赵德勇. 植物花青素生物合成途径相关基因研究进展及其基因工程修饰[J]. 热带生物学报, 2012, 3(1): 92-98. doi: 10.15886/j.cnki.rdswxb.2012.01.004
    引用本文: 赵德勇. 植物花青素生物合成途径相关基因研究进展及其基因工程修饰[J]. 热带生物学报, 2012, 3(1): 92-98. doi: 10.15886/j.cnki.rdswxb.2012.01.004
    ZHAO De-yong. Advances in research of genes involved in anthocyanin biological synthesis in plant and the genetic modification of the pathway[J]. Journal of Tropical Biology, 2012, 3(1): 92-98. doi: 10.15886/j.cnki.rdswxb.2012.01.004
    Citation: ZHAO De-yong. Advances in research of genes involved in anthocyanin biological synthesis in plant and the genetic modification of the pathway[J]. Journal of Tropical Biology, 2012, 3(1): 92-98. doi: 10.15886/j.cnki.rdswxb.2012.01.004
    参考文献 (65)

    目录

      /

      返回文章
      返回