留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

酸性稻田全程氨氧化菌对氮肥施加的响应

付亚军 高文龙 陈淼

付亚军, 高文龙, 陈淼. 酸性稻田全程氨氧化菌对氮肥施加的响应[J]. 热带生物学报, 2024, 15(5): 509-519. doi: 10.15886/j.cnki.rdswxb.20230128
引用本文: 付亚军, 高文龙, 陈淼. 酸性稻田全程氨氧化菌对氮肥施加的响应[J]. 热带生物学报, 2024, 15(5): 509-519. doi: 10.15886/j.cnki.rdswxb.20230128
FU Yajun, GAO Wenlong, CHEN Miao. Response of comammox Nitrospira to nitrogen fertilization in acidic paddy soil[J]. Journal of Tropical Biology, 2024, 15(5): 509-519. doi: 10.15886/j.cnki.rdswxb.20230128
Citation: FU Yajun, GAO Wenlong, CHEN Miao. Response of comammox Nitrospira to nitrogen fertilization in acidic paddy soil[J]. Journal of Tropical Biology, 2024, 15(5): 509-519. doi: 10.15886/j.cnki.rdswxb.20230128

酸性稻田全程氨氧化菌对氮肥施加的响应

doi: 10.15886/j.cnki.rdswxb.20230128
基金项目: 

广东省基础与应用基础研究基金项目(2022A1515010804)

中国热带农业科学院基本科研业务费专项(1630042022001)

海南省重点研发计划项目(ZDYF2021XDNY280)

详细信息
    第一作者:

    付亚军(1998-),男,海南大学生态与环境学院2021级硕士研究生。E-mail:f1056603026@163.com

    通信作者:

    陈淼(1985-),男,博士,副研究员。研究方向:农田土壤碳氮循环。E-mail:cataseppiael@163.com

  • 中图分类号: S511

Response of comammox Nitrospira to nitrogen fertilization in acidic paddy soil

  • 摘要: 为了揭示酸性稻田全程、半程氨氧化菌对增氮的响应与敏感性差异,通过盆栽实验,设置施加氮肥处理,测定分蘖期、抽穗期、成熟期全程及半程氨氧化菌的丰度,比较全程、半程氨氧化菌对施肥的响应敏感性。结果表明:未施肥与施肥情形下,分蘖期、抽穗期、成熟期土壤氨氧化菌的优势种群均为全程氨氧化菌(Clade A:3.24×108~7.24×108 copies·g-1,Clade B:2.14×108~1.48×109 copies·g-1)而非半程氨氧化菌(AOA:2.00×107~4.37×107 copies·g-1,AOB:1.35×107~3.31×107 copies·g-1)。施肥的主效应(Clade A:P=0.762,Clade B:氮素利用率=0.398)、生育期的主效应(Clade A:P=0.264,Clade B:P=0.237)、施肥与生育期的交互效应(Clade A:P=0.316,Clade B:P=0.294)均不显著,即全程氨氧化菌两大分支A和B季节变化并不显著,二者对尿素施加的响应并不敏感。未施氮肥与施加氮肥的情形下全程氨氧化菌丰度的环境调控因子可能有所不同。未施氮肥情形下,全程氨氧化菌的2个分支A(Clade A:R=-0.73,P=0.027)和B(Clade B:R=-0.75,P=0.019)的丰度均与土壤总氮含量呈负相关,预示着无外源性氮输入情形下,全程氨氧化菌的生长受土壤有机氮、氨化作用和游离氨负向调控。施加氮肥情形下,全程氨氧化菌尤其是分支A的丰度可能更多地受土壤p H、氧化还原电位(Eh)及NH4+-N含量的影响。氮肥的施加显著影响全程、半程氨氧化菌的群落共变性,致使Clade B丰度与AOA、AOB丰度的正向共变趋势消失。
  • [1] LI Y, CHAPMAN S, NICOL G, et al. Nitrification and nitrifiers in acidic soils[J]. Soil Biology&Biochemistry,2018, 116:290-301.
    [2] DAIMS H, LEBEDEVA E V, PJEVAC P, et al. Complete nitrification by Nitrospira bacteria[J]. Nature, 2015, 528:504-509.
    [3] VAN KESSEL M A H J, SPETH D R, ALBERTSEN M, et al. Complete nitrification by a single microorganism[J].Nature, 2015, 528:555-559.
    [4] KITS K D, SEDLACEK C J, LEBEDEVA E V, et al.Kinetic analysis of a complete nitrifier reveals an oligotrophic lifestyle[J]. Nature, 2017, 549:269-272.
    [5] HU H W, HE J Z. Comammox-a newly discovered nitrification process in the terrestrial nitrogen cycle[J]. Journal of Soils and Sediments, 2017, 17(12):2709-2717.
    [6] XIA F, WANG J G, ZHU T, et al. Ubiquity and diversity of complete ammonia oxidizers (comammox)[J]. Applied and Environmental Microbiology, 2018, 84(24):e01390-e01318.
    [7] LIU S, WANG H, CHEN L, et al. Comammox Nitrospira within the Yangtze River continuum:community, biogeography, and ecological drivers[J]. The ISME Journal, 2020,14:2488-2504.
    [8] ZHOU L J, HAN P, ZHAO M, et al. Biotransformation of lincomycin and fluoroquinolone antibiotics by the ammonia oxidizers AOA, AOB and comammox:a comparison of removal, pathways, and mechanisms[J]. Water Research,2021, 196:117003.
    [9] PJEVAC P, SCHAUBERGER C, POGHOSYAN L, et al.AmoA-targeted polymerase chain reaction primers for the specific detection and quantification of comammox Nitrospira in the environment[J]. Frontiers in Microbiology,2017, 8:1508.
    [10] PALOMO A, PEDERSEN A G, FOWLER S J, et al. Comparative genomics sheds light on niche differentiation and the evolutionary history of comammox Nitrospira[J].The ISME Journal, 2018, 12(7):1779-1793.
    [11] GAO W, FU Y, FAN C, et al. Factors predictive of the biogeographic distribution of comammox Nitrospira in terrestrial ecosystems[J]. Soil Biology and Biochemistry,2023, 184:109079.
    [12] ZHU G, WANG X, WANG S, et al. Towards a more laborsaving way in microbial ammonium oxidation:a review on complete ammonia oxidization (comammox)[J]. The Science of the Total Environment, 2022, 829:154590.
    [13] KE X, ANGEL R, LU Y, et al. Niche differentiation of ammonia oxidizers and nitrite oxidizers in rice paddy soil[J].Environmental Microbiology, 2013, 15(8):2275-2292.
    [14] XU S, WANG B, LI Y, et al. Ubiquity, diversity, and activity of comammox Nitrospira in agricultural soils[J].The Science of the Total Environment, 2020, 706:135684.
    [15] ZHAO J, BELLO M, MENG Y, et al. Selective inhibition of ammonia oxidising Archaea by simvastatin stimulates growth of ammonia oxidising bacteria[J]. Soil Biology and Biochemistry. 2020, 141:107673.
    [16] KITS K D, SEDLACEK C J, LEBEDEVA E V, et al.Kinetic analysis of a complete nitrifier reveals an oligotrophic lifestyle[J]. Nature, 2017, 549:269-272.
    [17] HU J, ZHAO Y, YAO X, et al. Dominance of comammox Nitrospira in soil nitrification[J]. The Science of the Total Environment, 2021, 780:146558.
    [18] ORELLANA L H, CHEE-SANFORD J C, SANFORD R A, et al. Year-round shotgun metagenomes reveal stable microbial communities in agricultural soils and novel ammonia oxidizers responding to fertilization[J]. Applied and Environmental Microbiology, 2018, 84(2):e01646-e01617.
    [19] TAKAHASHI Y, FUJITANI H, HIRONO Y, et al.Enrichment of comammox and nitrite-oxidizing Nitrospira from acidic soils[J]. Frontiers in Microbiology,2020, 11:1737.
    [20] SHEN J P, ZHANG L M, ZHU Y G, et al. Abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing Archaea communities of an alkaline sandy loam[J]. Environmental Microbiology, 2008, 10(6):1601-1611.
    [21] XIE J, WANG Z, WANG Y, et al. Manure combined with biochar reduces rhizosphere nitrification potential and amoA gene abundance of ammonia-oxidizing microorganisms in acid purple soil[J]. Applied Soil Ecology, 2023,181:104660.
    [22] LI C, HE Z Y, HU H W, et al. Niche specialization of comammox Nitrospira in terrestrial ecosystems:Oligotrophic or copiotrophic?[J]. Critical Reviews in Environmental Science and Technology, 2023, 53(2):161-176.
    [23] 陈娜,刘毅,肖谋良,等. CO2倍增和施氮对水稻不同生长期土壤反硝化细菌丰度的影响[J].环境科学研究, 2019, 32(4):683-691.
    [24] 石秀丽,郭萌萌,张莹,等.单步硝化作用与全程氨氧化微生物研究进展[J].草业学报, 2018, 27(7):196-203.
    [25] LIU H, HU H, HUANG X, et al. Canonical ammonia oxidizers, rather than comammox Nitrospira, dominated autotrophic nitrification during the mineralization of organic substances in two paddy soils[J]. Soil Biology and Biochemistry, 2021, 156:108192.
    [26] LIU T, WANG Z, WANG S, et al. Responses of ammoniaoxidizers and comammox to different long-term fertilization regimes in a subtropical paddy soil[J]. European Journal of Soil Biology, 2019, 93:103087.
    [27] WANG J, WANG J, RHODES G, et al. Adaptive responses of comammox Nitrospira and canonical ammonia oxidizers to long-term fertilizations:implications for the relative contributions of different ammonia oxidizers to soil nitrogen cycling[J]. The Science of the Total Environment, 2019, 668:224-233.
    [28] NIE S A, LI H, YANG X, et al. Nitrogen loss by anaerobic oxidation of ammonium in rice rhizosphere[J]. The ISME Journal, 2015, 9(9):2059-2067.
    [29] 鲍士旦.土壤农化分析[M]. 3版.北京:中国农业出版社, 2008:39-89.
    [30] BEMAN J M, FRANCIS C A. Diversity of ammoniaoxidizing Archaea and bacteria in the sediments of a hypernutrified subtropical estuary:Bahía del Tóbari,Mexico[J]. Applied and Environmental Microbiology,2006, 72(12):7767-7777.
    [31] ROTTHAUWE J H, WITZEL K P, LIESACK W. The ammonia monooxygenase structural gene amoA as a functional marker:molecular fine-scale analysis of natural ammonia-oxidizing populations[J]. Applied and Environmental Microbiology, 1997, 63(12):4704-4712.
    [32] JIANG R, WANG J G, ZHU T, et al. Use of newly designed primers for quantification of complete ammonia-oxidizing (comammox) bacterial clades and strict nitrite oxidizers in the genus Nitrospira[J]. Applied and Environmental Microbiology, 2020, 86(20):e01775-e01720.
    [33] LI D, REN Z, ZHOU Y, et al. Comammox Nitrospira and ammonia-oxidizing Archaea are dominant ammonia oxidizers in sediments of an acid mine lake containing high ammonium concentrations[J]. Applied and Environmental Microbiology, 2023, 89(3):e0004723.
    [34] ZHOU X, WANG S, MA S, et al. Effects of commonly used nitrification inhibitors-dicyandiamide (DCD), 3, 4-dimethylpyrazole phosphate (DMPP), and nitrapyrin-on soil nitrogen dynamics and nitrifiers in three typical paddy soils[J]. Geoderma, 2020, 380:114637.
    [35] LI C, HU H W, CHEN Q L, et al. Comammox Nitrospira play an active role in nitrification of agricultural soils amended with nitrogen fertilizers[J]. Soil Biology and Biochemistry, 2019, 138:107609.
    [36] GAO F, LI Y, FAN H, et al. Main environmental drivers of abundance, diversity and community structure of comammox Nitrospira in paddy soils[J]. Pedosphere,2023, 33(5):808-818.
    [37] LI D, FANG F, LIU G. Efficient nitrification and lowlevel N2O emission in a weakly acidic bioreactor at low dissolved-oxygen levels are due to comammox[J].Applied and Environmental Microbiology, 2021, 87(11):e00154-e00121.
    [38] LI C, HU H, CHEN Q, et al. Niche specialization of comammox Nitrospira clade A in terrestrial ecosystems[J].Soil Biology\&Biochemistry, 2021, 156:108231.
    [39] LIN Y, FAN J, HU H W, et al. Differentiation of individual clusters of comammox Nitrospira in an acidic Ultisol following long-term fertilization[J]. Applied Soil Ecology, 2022, 170:104267.
  • [1] 刘笑雨, 姚文博, 赵艳, 裴双康, 张丽娟, 朱梦雪, 王心蕊, 王佳乐, 许浩, 许克恒, 周永刚, 李海燕.  大豆过氧化物酶基因GmPOD123的功能鉴定及互作蛋白的筛选 . 热带生物学报, 2025, 16(): 1-9. doi: 10.15886/j.cnki.rdswxb.20250007
    [2] 彭晓莹, 金海峰, 闫文乾, 咸利民, 席羽, 张宝琴.  三叶草斑潜蝇过氧化氢酶基因的克隆、表达及其对温度的响应 . 热带生物学报, 2025, 16(): 1-10. doi: 10.15886/j.cnki.rdswxb.20240033
    [3] 林水花, 黄小艺, 杨彬君, 张玲玲, 李丝红, 黄幼霞.  闽产龙眼花的挥发性成分分析及其提取液抗氧化活性研究 . 热带生物学报, 2025, 15(): 1-8. doi: 10.15886/j.cnki.rdswxb.20240116
    [4] 刘珍, 王祝年, 王茂媛, 汤欢.  不同生长年份牛大力根部总皂苷的含量测定与抗氧化活性研究 . 热带生物学报, 2025, 16(): 1-8. doi: 10.15886/j.cnki.rdswxb.20240088
    [5] 胡文成, 朱寿松, 王艺璇, 阳达, 陈银华.  木薯茉莉酸氧化酶JOXs基因家族的鉴定及表达模式分析 . 热带生物学报, 2025, 16(): 1-10. doi: 10.15886/j.cnki.rdswxb.20240199
    [6] 李安, 马建忠, 任鹏, 邵鑫斌.  槲皮素对赤点石斑鱼生长性能、抗氧化能力和肠道菌群的影响 . 热带生物学报, 2025, 16(1): 152-162. doi: 10.15886/j.cnki.rdswxb.20240097
    [7] 吉南焕, 侯耀辉, 王开济, 赖杭桂, 庞真真.  不同施肥模式对越南油茶饼的总多酚含量和抗氧化活性的影响 . 热带生物学报, 2024, 15(2): 165-170. doi: 10.15886/j.cnki.rdswxb.20220045
    [8] 吕晓波, 李东海, 李剑碧.  不同潮汐环境鱼藤幼苗叶片抗氧化酶活性的生理响应 . 热带生物学报, 2024, 15(3): 281-289. doi: 10.15886/j.cnki.rdswxb.20230073
    [9] 米多, 陈雨, 邢芸, 陈银华, 陶均, 李春霞.  MutL调控水稻黄单胞菌的致病力 . 热带生物学报, 2023, 14(2): 234-239. doi: 10.15886/j.cnki.rdswxb.2023.02.014
    [10] 林雨彬, 秦永强, 马思远, 曾若菡, 陈雨梅, 刁晓平.  红树林沉积物反硝化和厌氧氨氧化速率的时空变化及环境响应 . 热带生物学报, 2023, 14(1): 129-135. doi: 10.15886/j.cnki.rdswxb.2023.01.012
    [11] 陈泽世, 白国松, 边拯宇, 李连彬.  海南文昌鸡源抑菌乳酸菌的筛选鉴定 . 热带生物学报, 2022, 13(5): 472-477. doi: 10.15886/j.cnki.rdswxb.2022.05.007
    [12] 曾子鑫, 吴晓君, 李京晨, 王曙光, 郭佩佩, 张丽.  氮肥与硝化抑制剂联用对热带菜地氧化亚氮排放的影响 . 热带生物学报, 2022, 13(6): 575-581. doi: 10.15886/j.cnki.rdswxb.2022.06.006
    [13] 王晟, 但建国.  施铁对普通野生稻田甲烷排放的影响 . 热带生物学报, 2022, 13(5): 496-501. doi: 10.15886/j.cnki.rdswxb.2022.05.010
    [14] 2021 年 3 期目录 . 热带生物学报, 2021, (3): 1-2.
    [15] 2021 年 2 期目录 . 热带生物学报, 2021, (2): 1-2.
    [16] 石婕, 符雪影, 吴强, 梁清干, 朱国鹏, 祝志欣.  甘薯叶片的抗氧化活性和相关成分比较 . 热带生物学报, 2021, 12(4): 466-472. doi: 10.15886/j.cnki.rdswxb.2021.04.009
    [17] 李丞, 张雨, 罗安, 鞠双, 符影, 罗素兰.  芋螺毒素Lv68的一步氧化及其对乙酰胆碱受体的阻断活性 . 热带生物学报, 2020, 11(2): 125-131. doi: 10.15886/j.cnki.rdswxb.2020.02.001
    [18] 肖珂, 周双清, 许云, 吴文嫱, 夏薇, 张荣萍, 黄东益, 黄小龙.  海绵共附生放线菌的分离鉴定与抑菌活性分析 . 热带生物学报, 2020, 11(2): 156-162. doi: 10.15886/j.cnki.rdswxb.2020.02.005
    [19] 陈明洋, 卓小垒, 代佳妮, 于靖, 戚华沙, 吴友根.  产地和果形对槟榔主要活性成分及抗氧化活性的影响 . 热带生物学报, 2020, 11(1): 31-41. doi: 10.15886/j.cnki.rdswxb.2020.01.006
    [20] 符春敏, 尹黎燕, 邓燕, 兰超杰, 韩忠钰, 金鑫, 李长江, 黄家权.  施肥模式对菠萝产量及农田氧化亚氮排放的影响 . 热带生物学报, 2020, 11(3): 331-340. doi: 10.15886/j.cnki.rdswxb.2020.03.011
  • 加载中
  • 计量
    • 文章访问数:  11
    • HTML全文浏览量:  1
    • PDF下载量:  4
    • 被引次数: 0
    出版历程
    • 收稿日期:  2023-11-28
    • 修回日期:  2024-02-25

    酸性稻田全程氨氧化菌对氮肥施加的响应

    doi: 10.15886/j.cnki.rdswxb.20230128
      基金项目:

      广东省基础与应用基础研究基金项目(2022A1515010804)

      中国热带农业科学院基本科研业务费专项(1630042022001)

      海南省重点研发计划项目(ZDYF2021XDNY280)

      作者简介:

      付亚军(1998-),男,海南大学生态与环境学院2021级硕士研究生。E-mail:f1056603026@163.com

      通讯作者: 陈淼(1985-),男,博士,副研究员。研究方向:农田土壤碳氮循环。E-mail:cataseppiael@163.com
    • 中图分类号: S511

    摘要: 为了揭示酸性稻田全程、半程氨氧化菌对增氮的响应与敏感性差异,通过盆栽实验,设置施加氮肥处理,测定分蘖期、抽穗期、成熟期全程及半程氨氧化菌的丰度,比较全程、半程氨氧化菌对施肥的响应敏感性。结果表明:未施肥与施肥情形下,分蘖期、抽穗期、成熟期土壤氨氧化菌的优势种群均为全程氨氧化菌(Clade A:3.24×108~7.24×108 copies·g-1,Clade B:2.14×108~1.48×109 copies·g-1)而非半程氨氧化菌(AOA:2.00×107~4.37×107 copies·g-1,AOB:1.35×107~3.31×107 copies·g-1)。施肥的主效应(Clade A:P=0.762,Clade B:氮素利用率=0.398)、生育期的主效应(Clade A:P=0.264,Clade B:P=0.237)、施肥与生育期的交互效应(Clade A:P=0.316,Clade B:P=0.294)均不显著,即全程氨氧化菌两大分支A和B季节变化并不显著,二者对尿素施加的响应并不敏感。未施氮肥与施加氮肥的情形下全程氨氧化菌丰度的环境调控因子可能有所不同。未施氮肥情形下,全程氨氧化菌的2个分支A(Clade A:R=-0.73,P=0.027)和B(Clade B:R=-0.75,P=0.019)的丰度均与土壤总氮含量呈负相关,预示着无外源性氮输入情形下,全程氨氧化菌的生长受土壤有机氮、氨化作用和游离氨负向调控。施加氮肥情形下,全程氨氧化菌尤其是分支A的丰度可能更多地受土壤p H、氧化还原电位(Eh)及NH4+-N含量的影响。氮肥的施加显著影响全程、半程氨氧化菌的群落共变性,致使Clade B丰度与AOA、AOB丰度的正向共变趋势消失。

    English Abstract

    付亚军, 高文龙, 陈淼. 酸性稻田全程氨氧化菌对氮肥施加的响应[J]. 热带生物学报, 2024, 15(5): 509-519. doi: 10.15886/j.cnki.rdswxb.20230128
    引用本文: 付亚军, 高文龙, 陈淼. 酸性稻田全程氨氧化菌对氮肥施加的响应[J]. 热带生物学报, 2024, 15(5): 509-519. doi: 10.15886/j.cnki.rdswxb.20230128
    FU Yajun, GAO Wenlong, CHEN Miao. Response of comammox Nitrospira to nitrogen fertilization in acidic paddy soil[J]. Journal of Tropical Biology, 2024, 15(5): 509-519. doi: 10.15886/j.cnki.rdswxb.20230128
    Citation: FU Yajun, GAO Wenlong, CHEN Miao. Response of comammox Nitrospira to nitrogen fertilization in acidic paddy soil[J]. Journal of Tropical Biology, 2024, 15(5): 509-519. doi: 10.15886/j.cnki.rdswxb.20230128
    参考文献 (39)

    目录

      /

      返回文章
      返回