留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

石墨相氮化碳基光催化剂改性研究的进展

黄明秀 王贝

黄明秀, 王贝. 石墨相氮化碳基光催化剂改性研究的进展[J]. 热带生物学报, 2024, 15(4): 499-508. doi: 10.15886/j.cnki.rdswxb.20230111
引用本文: 黄明秀, 王贝. 石墨相氮化碳基光催化剂改性研究的进展[J]. 热带生物学报, 2024, 15(4): 499-508. doi: 10.15886/j.cnki.rdswxb.20230111
HUANG Mingxiu, WANG Bei. Advances in research of the modification of graphitic carbon nitride based photocatalysts[J]. Journal of Tropical Biology, 2024, 15(4): 499-508. doi: 10.15886/j.cnki.rdswxb.20230111
Citation: HUANG Mingxiu, WANG Bei. Advances in research of the modification of graphitic carbon nitride based photocatalysts[J]. Journal of Tropical Biology, 2024, 15(4): 499-508. doi: 10.15886/j.cnki.rdswxb.20230111

石墨相氮化碳基光催化剂改性研究的进展

doi: 10.15886/j.cnki.rdswxb.20230111
基金项目: 

海南省自然科学基金资助项目(521QN238)

详细信息
    第一作者:

    黄明秀(2000-),女,海南师范大学化学与化工学院2022级硕士研究。E-mail:1939951811@qq.com

    通信作者:

    王贝(1992-),女,讲师,博士。研究方向:光电功能材料与器件。E-mail:beiwang_31@163.com

  • 中图分类号: TG142.1

Advances in research of the modification of graphitic carbon nitride based photocatalysts

  • 摘要: 光催化剂能够利用太阳能转化为化学能,在污染物降解、光解水产氢、二氧化碳还原等方面显示出巨大的应用潜力。作为一种新型光催化剂,石墨相氮化碳(g-C3N4)具有诸多优异的特性,低廉的制备成本、可调节的光学带隙、出色的化学与物理稳定性等,引起了研究人员的广泛关注。但未修饰的g-C3N4存在比表面积小,反应的活性位点不足,量子效率低和光生电荷载流子复合率较高等缺点,限制了g-C3N4在光催化领域中的应用,故而对现有的g-C3N4光催化剂进行改性,以改善其光催化性能。结合氮化碳改性处理迄今已取得显著成果,作者综述了石墨相氮化碳复合材料的主要改性方法,包括:元素掺杂、缺陷工程、设计各类纳米结构和构建异质结等,并对g-C3N4在光催化领域的发展趋势进行了展望,以供研究者参考。
  • [1] DENG Y, LI Z, TANG R, et al. What will happen when microorganisms"meet"photocatalysts and photocatalysis[J]. Environmental Science Nano, 2020, 7(3):702-723.
    [2] TAPIADOR F J. Assessment of renewable energy potential through satellite data and numerical models[J]. Energy&Environmental Science, 2009, 2(11):1142-1161.
    [3] LIEBIG J. Uber einige stickstoff-verbindungen[J]. Annalen Der Pharmacie, 1834, 10(1):1-47.
    [4] SUNG C M, SUNG M. Carbon nitride and other speculative superhard materials[J]. Materials Chemistry and Physics, 1996, 43(1):1-18.
    [5] ZAMBON A, MOUESCA J M, GHEORGHIU C, et al. SHeptazine oligomers:promising structural models for graphitic carbon nitride[J]. Chemical Science, 2016, 7(2):945-950.
    [6] KROKE E, SCHWARZ M, HORATH-BORDON E, et al.Tri-s-triazine derivatives part I. from trichloro-tri-s-triazine to graphitic C3N4 structures[J]. New Journal of Chemistry,2002, 26(5):508-512.
    [7] 陈基鹏,杨阳佳子,李鹏,等.石墨相氮化碳的制备、改性及应用[J].石油化工高等学校学报, 2023, 36(5):45-51.
    [8] TIAN J, LIU Q, ASIRI A M, et al. Ultrathin graphitic carbon nitride nanosheets:a novel peroxidase mimetic, Fe doping-mediated catalytic performance enhancement and application to rapid, highly sensitive optical detection of glucose[J]. Nanoscale, 2013, 5(23):11604-11609.
    [9] WANG X, CHEN X, THOMAS A, et al. Metal-containing carbon nitride compounds:a new functional organic-metal hybrid material[J]. Advanced Materials, 2009, 21(16):1609-1612.
    [10] GUO S, ZHU Y, YAN Y, et al. Holey structured graphitic carbon nitride thin sheets with edge oxygen doping via photo-Fenton reaction with enhanced photocatalytic activity[J]. Applied Catalysis B:Environmental, 2016,185:315-321.
    [11] JIANG J, CAO S, HU C, et al. A comparison study of alkali metal-doped g-C3N4 for visible-light photocatalytic hydrogen evolution[J]. Chinese Journal of Catalysis,2017, 38(12):1981-1989.
    [12] CHEN L, NING S, LIANG R, et al. Potassium doped and nitrogen defect modified graphitic carbon nitride for boosted photocatalytic hydrogen production[J]. International Journal of Hydrogen Energy, 2022, 47(30):14044-14052.
    [13] SUN S, LI J, CUI J, et al. Simultaneously engineering Kdoping and exfoliation into graphitic carbon nitride(gC3N4)for enhanced photocatalytic hydrogen production[J]. International Journal of Hydrogen Energy, 2019, 44(2):778-787.
    [14] ASIF H, SAMAYYA M, JI R, et al. Investigation of transition metal-doped graphitic carbon nitride for MO dye degradation[J]. Diamond&Related Materials, 2023, 132(10):9648-9656.
    [15] PHAM T H, MYUNG Y, VAN LE Q, et al. Visible-light photocatalysis of Ag-doped graphitic carbon nitride for photodegradation of micropollutants in wastewater[J].Chemosphere, 2022, 301(13):4626-4634.
    [16] WANG S, WAN C, CHEN F, et al. Regulating the bandgap of graphitic carbon nitride via Mn doping for boosting visible-light-driven water reduction[J]. Journal of Physics D:Applied Physics, 2022, 55(28):4002-4014.
    [17] WANG M, GUO P, ZHANG Y, et al. Synthesis of hollow lantern-like Eu(III)-doped g-C(3)N(4)with enhanced visible light photocatalytic perfomance for organic degradation[J].Journal of Hazardous Materials, 2018, 349:224-233.
    [18] WANG Y, LI Y, BAI X, et al. Facile synthesis of Ydoped graphitic carbon nitride with enhanced photocatalytic performance[J]. Catalysis Communications, 2016,84(5):179-182.
    [19] 梁发文,官海汕,李江鸿,等.非金属掺杂改性g-C3N4光催化降解水中有机污染物的研究进展[J].人工晶体学报, 2023, 52(1):170-181.
    [20] AGRAWAL S, VASENKO A S, TRIVEDI D J, et al.Charge carrier nonadiabatic dynamics in non-metal doped graphitic carbon nitride[J]. The Journal of Chemical Physics, 2022, 156(9):094702.
    [21] YANG Y, JIN H, ZHANG C, et al. Nitrogen-deficient modified P-Cl co-doped graphitic carbon nitride with enhanced photocatalytic performance[J]. Journal of Alloys and Compounds, 2020, 821:153439.
    [22] WANG W, HUANG Y, WANG Z. Defect engineering in two-dimensional graphitic carbon nitride and application to photocatalytic air purification[J]. Acta Physico Chimica Sinica, 2021, 37(8), 1-13.
    [23] ZHANG J, CHEN J, WAN Y, et al. Defect engineering in atomic-layered graphitic carbon nitride for greatly extended visible-light photocatalytic hydrogen evolution[J]. ACS Applied Materials&Interfaces, 2020, 12(12):13805-13812.
    [24] ZHANG Y C, AFZAL N, PAN L, et al. Structure-activity relationship of defective metal-based photocatalysts for water splitting:experimental and theoretical perspectives[J]. Advanced Science, 2019, 6(10):1900053.
    [25] WU Z, ZHAO Y, JIN W, et al. Recent progress of vacancy engineering for electrochemical energy conversion related applications[J]. Advanced Functional Materials, 2021, 31(9):2009070.
    [26] GUO N, XUE H, BAO A, et al. Achieving superior electrocatalytic performance by surface copper vacancy defects during electrochemical etching process[J]. Angewandte Chemie(International Ed in English), 2020, 59(33):13778-13784.
    [27] WANG Z, CHEN M, HUANG Y, et al. Self-assembly synthesis of boron-doped graphitic carbon nitride hollow tubes for enhanced photocatalytic NOx removal under visible light[J]. Applied Catalysis B:Environmental, 2018,239:352-361.
    [28] XIONG J, DI J, XIA J, et al. Surface defect engineering in 2D nanomaterials for photocatalysis[J]. Advanced Functional Materials, 2018, 28(39):1983-2002.
    [29] ZHANG T, XING W, LI H, et al. Surface defect engineering and morphology control of graphitic carbon nitride with synergistically improved photocatalytic performance[J]. New Journal of Chemistry,2021,45(31):13949-13955.
    [30] LIU F, YAO Z, XU S, et al. Enhanced photocatalytic activity induced by defect engineering in porous graphitic carbon nitride nanosheets[J]. Journal of Materials Science:Materials in Electronics, 2022, 33(18):14535-14544.
    [31] YAN P, DONG J, MO Z, et al. Enhanced photoelectrochemical sensing performance of graphitic carbon nitride by nitrogen vacancies engineering[J]. Biosensors&Bioelectronics, 2020, 148(11):1802-1809.
    [32] SHEN M, ZHANG L, WANG M, et al. Carbon-vacancy modified graphitic carbon nitride:enhanced CO2 photocatalytic reduction performance and mechanism probing[J].Journal of Materials Chemistry A, 2019, 7(4):1556-1563.
    [33] GU Z, CUI Z, WANG Z, et al. Carbon vacancies and hydroxyls in graphitic carbon nitride:promoted photocatalytic NO removal activity and mechanism[J]. Applied Catalysis B:Environmental, 2022, 279(11):9376-9387.
    [34] LI H, YU J, GONG Y, et al. Perovskite catalysts with different dimensionalities for environmental and energy applications:a review[J]. Separation and Purification Technology, 2023, 307(12):2716-2728.
    [35] OVCHAROV M, SHCHERBAN N, FILONENKO S, et al. Hard template synthesis of porous carbon nitride materials with improved efficiency for photocatalytic CO2utilization[J]. Materials Science and Engineering:B,2015, 202(8):1-7.
    [36] WANG Y, ZHANG J, WANG X, et al. Boron-and fluorine-containing mesoporous carbon nitride polymers:metal-free catalysts for cyclohexane oxidation[J]. Angewandte Chemie(International Ed in English), 2010, 49(19):3356-3359.
    [37] CHEN Z, SUN P, FAN B, et al. In situ template-free ionexchange process to prepare visible-light-active g-C3N4/NiS hybrid photocatalysts with enhanced hydrogen evolution activity[J]. The Journal of Physical Chemistry C,2014, 118(15):7801-7807.
    [38] DONG J, ZHANG Y, HUSSAIN M I, et al. G-C(3)N(4):properties, pore modifications, and photocatalytic applications[J]. Nanomaterials, 2021, 12(1):121-152.
    [39] HAO M, LI Y, GAO L, et al. In-situ hard template synthesis of mesoporous carbon/graphite carbon nitride(C/CNT-x)composites with high photocatalytic activities under visible light irridation[J]. Solid State Sciences, 2020,109:106428.
    [40] XU Z, KONG L, WANG H, et al. Soft-template assisted preparation of hierarchically porous graphitic carbon nitride layers for high-performance supercapacitors[J].Journal of Applied Polymer Science, 2022, 139(39):52947-52959.
    [41] WANG W, FANG J, CHEN H. Nano-confined g-C3N4 in mesoporous SiO2 with improved quantum size effect and tunable structure for photocatalytic tetracycline antibiotic degradation[J]. Journal of Alloys and Compounds,2020, 819:153064.
    [42] FEI B, TANG Y, WANG X, et al. One-pot synthesis of porous g-C3N4 nanomaterials with different morphologies and their superior photocatalytic performance[J]. Materials Research Bulletin, 2018, 102:209-217.
    [43] SEGURA J L, MANCHEÑO M J, ZAMORA F. Covalent organic frameworks based on Schiff-base chemistry:synthesis, properties and potential applications[J]. Chemical Society Reviews, 2016, 45(20):5635-5671.
    [44] LI H, NING F, CHEN X, et al. Effect of carbon and nitrogen double vacancies on the improved photocatalytic hydrogen evolution over porous carbon nitride nanosheets[J].Catalysis Science&Technology,2021,11(9):3270-3278.
    [45] HE Z, MO Z, FU J, et al. A bubble-assisted strategy to prepare porous ultrathin carbon nitride for highly-active photocatalytic hydrogen production[J]. Journal of Alloys and Compounds, 2022, 904(16):3788-3796.
    [46] ZENG Y, ZHAN X, LI H, et al. Bottom-to-Up synthesis of functional carbon nitride polymer:Design principles,controlled synthesis and applications[J]. European Polymer Journal, 2023, 182(11):11734-11750.
    [47] SHE X, LIU L, JI H, et al. Template-free synthesis of 2D porous ultrathin nonmetal-doped g-C3N4 nanosheets with highly efficient photocatalytic H2 evolution from water under visible light[J]. Applied Catalysis B:Environmental, 2016, 187:144-153.
    [48] ZHONG L, YING M, MOU Z, et al. Template-free preparation of carbon nitride hollow spheres with adjustable sizes for photocatalytic hydrogen generation[J]. Journal of Colloid and Interface Science, 2022, 612:479-487.
    [49] 巩正奇,闫楚璇,宣之易,等.制备类石墨相氮化碳多孔光催化剂的模板法发展[J].工程科学学报,2021,43(3):345-354.
    [50] 王佳一.改性石墨相氮化碳基复合光催化剂的制备及其可见光降解污染物性能研究[D].西安理工大学,2023.
    [51] REN Y, ZENG D, ONG W J. Interfacial engineering of graphitic carbon nitride(g-C3N4)-based metal sulfide heterojunction photocatalysts for energy conversion:a review[J]. Chinese Journal of Catalysis, 2019, 40(3):289-319.
    [52] WU S, ZHAO H J, LI C F, et al. Type II heterojunction in hierarchically porous zinc oxide/graphitic carbon nitride microspheres promoting photocatalytic activity[J]. Journal of Colloid and Interface Science, 2019, 538:99-107.
    [53] MEHTAB A, BANERJEE S, MAO Y, et al. Type-II CuFe(2)O(4)/graphitic carbon nitride heterojunctions for highefficiency photocatalytic and electrocatalytic hydrogen generation[J]. ACS Applied Materials&Interfaces,2022, 14(39):44317-44329.
    [54] PUTRI L K, NG B J, ONG W J, et al. Engineering nanoscale p-n junction via the synergetic dual-doping of p-type boron-doped graphene hybridized with n-type oxygen-doped carbon nitride for enhanced photocatalytic hydrogen evolution[J]. Journal of Materials Chemistry A,2018, 6(7):3181-3194.
    [55] ZHANG K, AI Z, HUANG M, et al. Type II cuprous oxide/graphitic carbon nitride p-n heterojunctions for enhanced photocatalytic nitrogen fixation[J]. Journal of Catalysis, 2021, 395(1):273-281.
    [56] GE L, XU Y, DING L, et al. Perovskite-type BiFeO3/ultrathin graphite-like carbon nitride nanosheets p-n heterojunction:boosted visible-light-driven photoelectrochemical activity for fabricating ampicillin aptasensor[J]. Biosensors and Bioelectronics, 2019, 124/125:33-39.
    [57] 杜仕文.过渡金属硒化物/硫化镉基肖特基异质结的构筑及光解水析氢性能研究[D].武汉:武汉大学,2020.
    [58] DING L, WANG L, LIU R, et al. Carbon nitride based Schottky junction with a Ni-Mo synergistic interaction for highly efficient photocatalytic hydrogen production[J].Catalysis Science&Technology, 2022, 12(21):6465-6472.
    [59] LI H, TU W, ZHOU Y, et al. Z-scheme photocatalytic systems for promoting photocatalytic performance:recent progress and future challenges[J]. Advanced Science,2016, 3(11):1500389.
    [60] LOW J, JIANG C, CHENG B, et al. A review of direct Zscheme photocatalysts[J]. Small Methods, 2017, 1(5):8-29.
    [61] GE C, WANG B, YANG H, et al. Direct Z-scheme GaSe/ZrS2 heterojunction for overall water splitting[J]. International Journal of Hydrogen Energy, 2023, 48(36):13460-13469.
    [62] LU K, HOU F, FU W, et al. Efficient solar photocatalytic hydrogen production using direct Z-scheme heterojunctions[J]. Physical Chemistry Chemical Physics,2021, 23(39):22743-22749.
    [63] TADA H, MITSUI T, KIYONAGA T, et al. All-solidstate Z-scheme in CdS-Au-TiO2 three-component nanojunction system[J]. Nature Materials, 2006, 5(10):782-786.[PubMed]
    [64] FU J, YU J, JIANG C, et al. G-C3N4-based heterostructured photocatalysts[J]. Advanced Energy Materials,2018, 8(3):1503-1534.
    [65] BATVANDI M, HAGHIGHATZADEH A, MAZINANI B, et al. Visible-light-driven photocatalysis with Z-scheme Ag3PO4@N-GQDs@g-C3N4 nano/hetero-junctions[J]. Applied Physics A, 2022, 128(10):853-871.
    [66] FU J, XU Q, LOW J, et al. Ultrathin 2D/2D WO3/g-C3N4step-scheme H2-production photocatalyst[J]. Applied Catalysis B:Environmental, 2019, 243:556-565.
    [67] MEI F, ZHANG J, LIANG C, et al. Fabrication of novel CoO/porous graphitic carbon nitride S-scheme heterojunction for efficient CO2 photoreduction[J]. Materials Letters, 2021, 282(1):128722-128732.
    [68] DENG X, CHEN R, WANG C, et al. Iron-tungsten oxides modified oxygen-rich carbon nitride with defects Sscheme heterojunction for boosting photo-Fenton like removal of pollutants[J]. Chemical Engineering Journal,2023, 451:138629.
  • [1] 林德鑫, 衣雪松.  FeCl3改性活性炭的制备、表征与吸附性能研究 . 热带生物学报, 2023, 14(4): 371-378. doi: 10.15886/j.cnki.rdswxb.2023.04.004
  • 加载中
  • 计量
    • 文章访问数:  9
    • HTML全文浏览量:  0
    • PDF下载量:  0
    • 被引次数: 0
    出版历程
    • 收稿日期:  2023-09-16
    • 修回日期:  2023-10-31
    • 刊出日期:  2024-07-25

    石墨相氮化碳基光催化剂改性研究的进展

    doi: 10.15886/j.cnki.rdswxb.20230111
      基金项目:

      海南省自然科学基金资助项目(521QN238)

      作者简介:

      黄明秀(2000-),女,海南师范大学化学与化工学院2022级硕士研究。E-mail:1939951811@qq.com

      通讯作者: 王贝(1992-),女,讲师,博士。研究方向:光电功能材料与器件。E-mail:beiwang_31@163.com
    • 中图分类号: TG142.1

    摘要: 光催化剂能够利用太阳能转化为化学能,在污染物降解、光解水产氢、二氧化碳还原等方面显示出巨大的应用潜力。作为一种新型光催化剂,石墨相氮化碳(g-C3N4)具有诸多优异的特性,低廉的制备成本、可调节的光学带隙、出色的化学与物理稳定性等,引起了研究人员的广泛关注。但未修饰的g-C3N4存在比表面积小,反应的活性位点不足,量子效率低和光生电荷载流子复合率较高等缺点,限制了g-C3N4在光催化领域中的应用,故而对现有的g-C3N4光催化剂进行改性,以改善其光催化性能。结合氮化碳改性处理迄今已取得显著成果,作者综述了石墨相氮化碳复合材料的主要改性方法,包括:元素掺杂、缺陷工程、设计各类纳米结构和构建异质结等,并对g-C3N4在光催化领域的发展趋势进行了展望,以供研究者参考。

    English Abstract

    黄明秀, 王贝. 石墨相氮化碳基光催化剂改性研究的进展[J]. 热带生物学报, 2024, 15(4): 499-508. doi: 10.15886/j.cnki.rdswxb.20230111
    引用本文: 黄明秀, 王贝. 石墨相氮化碳基光催化剂改性研究的进展[J]. 热带生物学报, 2024, 15(4): 499-508. doi: 10.15886/j.cnki.rdswxb.20230111
    HUANG Mingxiu, WANG Bei. Advances in research of the modification of graphitic carbon nitride based photocatalysts[J]. Journal of Tropical Biology, 2024, 15(4): 499-508. doi: 10.15886/j.cnki.rdswxb.20230111
    Citation: HUANG Mingxiu, WANG Bei. Advances in research of the modification of graphitic carbon nitride based photocatalysts[J]. Journal of Tropical Biology, 2024, 15(4): 499-508. doi: 10.15886/j.cnki.rdswxb.20230111
    参考文献 (68)

    目录

      /

      返回文章
      返回