[1] |
曾鸿运,吴元立,黄秉智.中国香蕉育种研究进展[J]. 果树学报, 2023, 40(11):2446-2465. |
DOI:10.13925/j.cnki.gsxb.20230151. |
[2] |
梁张慧,吴宇军,刘绍钦,等.皇帝蕉优质高产高效栽培技术[J]. 广东农业科学, 2010, 37(9):79-80. |
[3] |
王芳,谢江辉.我国香蕉产业“十三五”回顾与“十四五”展望[J]. 中国热带农业, 2022(3):15-22. |
[4] |
刘雪红,吴坤林,陈国华,等.“金手指”香蕉的组织培养和快速繁殖[J]. 中国南方果树, 2006(1):34-35. |
[5] |
冷张玲.“中国皇帝蕉之乡”-海南澄迈县[J]. 中国果菜, 2017, 37(8):83-84. |
[6] |
唐文,李凯,李羽佳,等.优质绿色皇帝蕉栽培管理技术[J]. 分子植物育种, 2018, 16(8):2730-2735. |
[7] |
EVSTATIEV B I, GABROVSKA-EVSTATIEVA K G. A review on the methods for big data analysis in agriculture[C] //proceedings of the IOP Conference Series Materials Science and Engineering, 2021. |
[8] |
BENOS L, TAGARAKIS A C, DOLIAS G, et al. Machine Learning in Agriculture:a Comprehensive Updated Review[J]. Sensors(Basel, Switzerland), 2021, 21(11):3758-3812. |
[9] |
OLIVARES B O, VEGA A, CALDERÓN M A R, et al.Identification of Soil Properties Associated with the Incidence of Banana Wilt Using Supervised Methods[J]. Plants, 2022, 11(15):2070-2088. |
[10] |
ALABI T R, ADEWOPO J, DUKE O P, et al. Banana Mapping in Heterogenous Smallholder Farming Systems Using High-Resolution Remote Sensing Imagery and Machine Learning Models with Implications for Banana Bunchy Top Disease Surveillance[J]. Remote Sensing,2022, 14(20):5206-5227. |
[11] |
CHAUDHARI V, PATIL M P. Detection and Classification of Banana Leaf Disease Using Novel Segmentation and Ensemble Machine Learning Approach[J]. Applied Computer Systems, 2023, 28(1):92-99. |
[12] |
OLIVARES B O, CALERO J, REY J C, et al. Correlation of banana productivity levels and soil morphological properties using regularized optimal scaling regression[J]. Catena,2022, 208:105718-105728. |
[13] |
ANGELA V D S, ALFREDO B N, JHONATAN C P, et al. Artificial neural network modelling in the prediction of bananas'harvest[J]. Scientia Horticulturae, 2019,257:108724-108730. |
[14] |
CYNTHIA R. Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead[J]. Nature Machine Intelligence,2019, 1(5):206-215. |
[15] |
STROBL C, BOULESTEIX A-L, KNEIB T, et al.Conditional variable importance for random forests[J]. BMC bioinformatics, 2008, 9:1-11. |
[16] |
ALTMANN A, TOLOŞI L, SANDER O, et al. Permutation importance:a corrected feature importance measure[J]. Bioinformatics, 2010, 26(10):1340-1347. |
[17] |
PATRICK F, BRETT M W, R. W V, et al. Mid-season empirical cotton yield forecasts at fine resolutions using large yield mapping datasets and diverse spatial covariates[J]. Agricultural Systems, 2020, 184:102894-1028104. |
[18] |
SCOTT M L, LEE S-I. A unified approach to interpreting model predictions[C]; proceedings of the Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, California, USA, 2017.Curran Associates Inc. |
[19] |
SHAPLEY L S. A value for n-person games[J]. Contributions to the Theory of Games, 1953:1-15. |
[20] |
JONES E J, BISHOP T F A, MALONE B P, et al. Identifying causes of crop yield variability with interpretive machine learning[J]. Computers and Electronics in Agriculture, 2022, 192:106632-106641. |
[21] |
ATTIA A, GOVIND A, QURESHI A S, et al. Coupling Process-Based Models and Machine Learning Algorithms for Predicting Yield and Evapotranspiration of Maize in Arid Environments[J]. Water, 2022, 14(22):3647-3662. |
[22] |
季鹏,袁星.基于多种机器学习模型的西北地区蒸散发模拟与趋势分析[J]. 大气科学学报, 2023, 46(1):69-81. |
[23] |
袁雨珍,杜衍红,周燕敏.涡旋提取-电感耦合等离子体发射光谱(ICP-OES) 法测定酸性和中性土壤中交换性盐基总量[J]. 中国无机分析化学, 2023:13(2):1408-1413. |
[24] |
唐碧玉,阳兆鸿,陈祝炳,等.超声浸提-电感耦合等离子体原子发射光谱内标法测定离子型稀土矿区土壤中有效硫[J]. 冶金分析, 2020, 40(3):57-61. |
[25] |
陈波,马玲,王金云.电感耦合等离子体原子发射光谱法同时测定复垦土壤中有效铜、锌、铁、锰、硫的含量[J]. 理化检验-化学分册, 2022, 58(2):166-172. |
[26] |
BRAY M, HAN D W. Identification of support vector machines for runoff modelling[J]. Journal of Hydroinformatics, 2004, 6(4):265-280. |
[27] |
HOOGENBOOM G, PORTER C H, BOOTE K J, et al.The DSSAT crop modeling ecosystem[M]. America:Advances in crop modelling for a sustainable agriculture,2019. |
[28] |
SABAS P, SILAS M, ISAMBI M, et al. Time series and ensemble models to forecast banana crop yield in Tanzania, considering the effects of climate change[J]. Resources, Environment and Sustainability, 2023, 14:100138-100148. |
[29] |
OLIVARES B O, ANDRÉS V, RUEDA C M A, et al. Prediction of Banana Production Using Epidemiological Parameters of Black Sigatoka:An Application with Random Forest[J]. Sustainability, 2022, 14(21):14123-14123. |
[30] |
SOARES J D R, PASQUAL M, LACERDA W S, et al.Comparison of techniques used in the prediction of yield in banana plants[J]. Scientia Horticulturae, 2014, 167:84-90. |
[31] |
BARLIN O O, MIGUEL A A, CESAR A O, et al. Relationship Between Soil Properties and Banana Productivity in the Two Main Cultivation Areas in Venezuela[J]. Journal of Soil Science and Plant Nutrition, 2020, 20:2512-2524. |
[32] |
RAMEZANPOUR M R, FARAJPOUR M. Application of artificial neural networks and genetic algorithm to predict and optimize greenhouse banana fruit yield through nitrogen, potassium and magnesium[J]. PloS one, 2022,17(2):1-12. |
[33] |
KENNETH N. Diagnosis and management of nutrient constraints in bananas(Musa spp.) [J]. Fruit Crops, 2020,651-659. |
[34] |
赵学强,潘贤章,马海艺,等.中国酸性土壤利用的科学问题与策略[J]. 土壤学报, 2023, 60(5):1248-1264. |