-
茚虫威是由美国杜邦公司开发的含有手性分子的恶二嗪类杀虫剂,其中(+)-S-茚虫威具有杀虫活性,对鳞翅目害虫有较好的防效[1]。由于单一纯异构体开发成本和技术工艺要求高、成本高,目前国内外市面上销售的茚虫威杀虫剂多数为(+)-S-茚虫威和(−)-R-茚虫威两种对映体的混合剂型,其中杜邦公司生产的茚虫威产品主要有3种对映体混合剂型:DPX-JW062(S∶R =1∶1)、DPX-MP062(S∶R=3∶1)、DPX-KN128(S∶R=1∶0)[2],中国市场上茚虫威产品主要是富含S异构体的产品(S∶R =2.2∶1和3∶1) [3-4]。茚虫威广泛应用于对棉花、玉米、水稻和果树等的害虫防治[5-8]。由于桑园往往与农田、果园等呈交错分布,对桑园附近农田及果园施药时,杀虫剂会随空气漂移落在桑树上对桑叶产生污染[9-10]。家蚕(Bombyx mori)进食被杀虫剂污染的桑叶后后果严重,甚至可导致蚕茧绝收,不仅给养蚕业造成巨大的经济损失,而且对丝绸产业产生影响[11-12]。目前对环境生物家蚕的毒性报道中使用的多为茚虫威商品药,其中陈伟国等[13]测定30%茚虫威悬浮剂对3龄期蚕的24 h LC50为0.3604 mg ·L−1,俞瑞鲜等[14]和陈丽萍等[15]测定15%茚虫威悬浮剂对家蚕96 h LC50分别为0.449 mg ·L−1和0.439 mg ·L−1,毒性为剧毒。(+)-S-茚虫威、(−)-R-茚虫威及茚虫威原药对家蚕毒性研究较少,仅有石丽红[16]采用浸叶法测定了(+)-S-茚虫威(>98%)、(−)-R-茚虫威(>98%)和S-茚虫威富集体(2.33S∶1R)对家蚕96 h的急性毒性报道,LC50分别为1.96、108和6.89 mg L−1。
有研究发现茚虫威手性异构体对斑马鱼的毒性具有对映选择性[17-18],诱导斑马鱼产生氧化应激毒性且表现出对映选择性[19]。然而茚虫威原药、(+)-S-茚虫威和(−)-R-茚虫威对家蚕的氧化应激的影响尚未见报道,因此本研究以家蚕为生物模型,采用喷雾法测定茚虫威原药(3S:1R)、(+)-S-茚虫威和(−)-R-茚虫威对家蚕的急性毒性,测定其抗氧化酶超氧化物歧化酶(SOD)、过氧化氢酶(CAT)和过氧化物酶(POD)的活性变化来评价茚虫威原药(3S:1R)、(+)-S-茚虫威和(−)-R-茚虫威对家蚕的毒性效应,为后续茚虫威的实际应用及其对于环境生物的安全性评价提供理论依据。
-
参照《化学农药家蚕慢性毒性试验准则》使用桑叶浸渍修正系数对农药对家蚕的急性毒性等级划分标准的LC50进行修正后可知,茚虫威原药对家蚕96 h的毒性等级为高毒,(+)-S-茚虫威和(−)-R-茚虫威对家蚕96 h的毒性等级为剧毒,毒性大小依次为(−)-R-茚虫威> (+)-S-茚虫威>茚虫威原药。主要中毒症状为吐黄水、蚕体发黑、蚕体缩短现象,随着药液浓度的升高,中毒家蚕越多。(+)-R-茚虫威对家蚕的LC50是(−)-S-茚虫威的2.75倍,茚虫威的2种手性对映体对家蚕表现出对映选择性毒性。茚虫威原药(3S:1R)的共毒系数为12.868≤80,(+)-S-茚虫威和(−)-R-茚虫威2种药剂混合表现为拮抗作用(表1)。
药剂名称 96 h致死中浓度LC50
/(mg ·kg−1)95%置信区间
/(mg ·kg−1)回归方程 R2 共毒系数 茚虫威原药 0.379 0.182~0.616 y=1.14+2.57x 0.911 12.868 (+)-S-茚虫威 0.041 0.002~0.093 y=2.25+1.55x 0.895 (−)-R-茚虫威 0.113 0.008-0.232 y=1.75+1.81x 1.000 -
以牛血清白蛋白为标准蛋白绘制蛋白质标准曲线,标准曲线方程为y=0.044x+0.048,相关系数R2为0.971。
-
从图1-A可知茚虫威原药诱导家蚕体内的超氧化物歧化酶(SOD)活性上升,和对照组SC相比,5个处理组SOD活性均显著上升。在图1-B中(+)-S-茚虫威处理组中0.730、1.460和2.920 mg ·kg−13个浓度诱导SOD活性显著上升,其余2个浓度SOD活性显著下降。在图1-C中(−)-R-茚虫威处理组中0.183和0.365 mg ·kg−1浓度下诱导SOD活性显著降低,SOD活性在0.730、1.460和2.920 mg ·kg−1浓度下显著上升。
在0.183和0.365 mg ·kg−1浓度下,茚虫威原药诱导SOD酶活性和对照相比上升8.577%和23.585%。(+)-S-茚虫威诱导SOD酶活性和对照相比下降28.536%和23.317%,(−)-R-茚虫威诱导SOD酶活性和对照相比下降14.735%和8.170%。在0.730、1.460和2.920 mg ·kg−1浓度下,茚虫威原药诱导SOD酶活性和对照相比上升34.129%、20.626%和32.948%。(+)-S-茚虫威诱导SOD酶活性和对照相比上升66.079%、25.723%和38.650%,(−)-R-茚虫威诱导SOD酶活性和对照相比上升77.247%、32.006%和54.537%。0.183和0.365 mg ·kg−1(+)-S-茚虫威对SOD的抑制效果更好。
-
由图2-A可知茚虫威原药诱导家蚕体内的过氧化氢酶(CAT)活性整体呈上升趋势,和对照相比,5个处理组CAT活性均显著上升。由图2-B可以看出(+)-S-茚虫威处理组中除0.183 mg ·kg−1浓度下CAT活性显著下降,其余处理组CAT活性均显著上升。由图2-C可知(−)-R-茚虫威处理组中除0.183 mg ·kg−1浓度下CAT活性下降,其余4个浓度CAT活性均显著上升。
和对照相比,在0.183 mg ·kg−1浓度下茚虫威原药诱导CAT活性上升39.054%,(+)-S-茚虫威和-)-R-茚虫威诱导CAT活性下降42.420%和13.169%。在0.365、0.730、1.460和2.920 mg ·kg−1浓度下,茚虫威原药诱导CAT活性上升59.065%、84.756%、33.526%和95.957%,(+)-S-茚虫威诱导CAT活性上升76.001%、251.725%、34.229%和234.280%,(−)-R-茚虫威诱导CAT活性上升8.590%、173.678%、30.407%和125.553%。在0.183 mg ·kg−1(+)-S-茚虫威对CAT的活性抑制效果最好。
-
由图3-A可知,茚虫威原药处理组中5个浓度均诱导家蚕体内POD活性下降。图3-B结果表明,和对照相比,(+)-S-茚虫威诱导POD活性均显著下降。由图3-C可知,(−)-R-茚虫威诱导POD活性下降,和对照相比,5个浓度家蚕POD活性均显著下降。
和对照相比,在0.183、0.365、0.730、1.460和2.920 mg ·kg−1浓度下茚虫威原药诱导POD活性下降165.885%、93.751%、30.108%、52.268%和6.206%;(+)-S-茚虫威诱导POD活性下降266.722%、217.385%、151.490%、205.520%和378.033%;(−)-R-茚虫威诱导POD活性下降406.287%、314.239%、258.185%、119.468%和64.830%。(−)-R-茚虫威在0.183、0.365、0.730 mg·kg−1对POD活性的抑制效果最好,(+)-S-茚虫威在0.183和2.920 mg ·kg−1 2个浓度对POD的抑制效果最好。
The acute toxic effects of chiral indoxacarb on Bombyx mori
doi: 10.15886/j.cnki.rdswxb.20220035
- Received Date: 2022-05-30
- Accepted Date: 2023-04-18
- Rev Recd Date: 2022-06-27
- Available Online: 2023-04-23
- Publish Date: 2023-09-25
-
Key words:
- indoxacarb /
- chiral isomers /
- Bombyx mori /
- enantioselective /
- oxidative stress
Abstract: Indoxacarb belongs to oxadiazine insecticide, which blocks the insect sodium channel. Lepidopteran pests, such as Cotton Bollworm, Plutella xylostella, and Spodoptera litura, were effectively controlled by indoxacarb. The scholars have focused on the selective toxicity of indoxacarb isomers to non-target organisms. In this study the acute toxicity of indoxacarb and its isomers, (+)-S-indoxacarb and (−)-R-indoxacarb, on the silkworm Bombyx mori was evaluated by spray method. Additionally, the toxic effects of indoxacarb and its isomers on the silkworm were evaluated by measuring the changes in the activities of antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) in the silkworm. The results showed that the 96 h-LC50 of indoxacarb, (+)-S-indoxacarb and (−)-R-indoxacarb to the silkworm were 0.379, 0.041 and 0.113 mg·kg−1 mulberry leaf, respectively. The (+)-S- indoxacarb and (−)-R- indoxacarb were highly toxic to the silkworm. The 96 h-LC50 of the (+)-S-indoxacarb was 2.750 folds higher than that of the (−)-R-indoxacarb, which suggested an enantioselective toxicity to the silkworms. The mixture of the (+)-S-indoxacarb and (−)-R-indoxacarb showed an antagonism effect with the co-toxicity coefficient being 12.868. The activities of SOD and CAT in the silkworm were significantly increased in the indoxacarb treatment groups, which induced oxidative stress in the silkworm. The activities of SOD significantly increased in the (+)-S-indoxacarb and (−)-R-indoxacarb treatment groups with the concentrations of 0.730, 1.460, and 2.920 mg·kg−1 mulberry leaf. The activities of CAT significantly increased in the (+)-S-indoxacarb and (−)-R-indoxacarb treatment groups with all the concentrations except the concentration of 0.183 mg·kg−1. The activities of POD were decreased in all the indoxacarb treatment groups. The effect of indoxacarb on SOD, CAT and POD was lower than the sum of the individual effects of the (+)-S-indoxacarb and (−)-R-indoxacarb, indicating that the mixture of the (+)-S-indoxacarb and (−)-R-indoxacarb produced antagonistic effects on inducing of oxidative stress in the silkworm. The toxic effects of indoxacarb, (+)-S-indoxacarb and (−)-R-indoxacarb on silkworms were preliminarily evaluated, which provides reference for the application of indoxacarb in the field. This result suggests that the indoxacarb when sprayed in the field should be kept away from mulberry gardens to avoid harm to silkworms.
Citation: | ZHAO Wenyu, ZHANG Jie, ZHENG Shixiang, WANG Xinyu, SU Xiaoting, FAN Yongmei. The acute toxic effects of chiral indoxacarb on Bombyx mori[J]. Journal of Tropical Biology, 2023, 14(5): 514-520. doi: 10.15886/j.cnki.rdswxb.20220035 |