[1] 华乃震. 低风险、环境友好杀虫剂茚虫威[J]. 世界农药, 2019, 41(1): 39 − 44.
[2] 李富根, 艾国民, 李友顺, 等. 茚虫威的作用机制与抗性研究进展[J]. 农药, 2013, 52(8): 558 − 560.
[3]

ZHANG Y, HU D, LING H, et al. Comparative study of the selective degradations of two enantiomers in the racemate and an enriched concentration of indoxacarb in soils [J]. Journal of Agricultural and Food Chemistry, 2014, 62(37): 9066 − 9072. doi:  10.1021/jf5018803
[4] 班华卓, 张大永. 新颖高效手性杀虫剂茚虫威的研究进展[J]. 农药, 2018, 57(12): 864 − 869.
[5]

WANG Q, RUI C, WANG L, et al. Field‐evolved resistance to 11 insecticides and the mechanisms involved in Helicoverpa armigera (Lepidoptera: Noctuidae) [J]. Pest Management Science, 2021, 77(11): 5086 − 5095. doi:  10.1002/ps.6548
[6] 商暾, 刘英, 杨茂发, 等. 虫螨腈和茚虫威及其混配对草地贪夜蛾的室内毒力测定[J]. 山地农业生物学报, 2021, 40(3): 69 − 73.
[7] 吕楠楠, 梁沛, 高希武. 主要农业害虫对茚虫威的抗性现状及其治理策略[J]. 植物保护学报, 2020, 47(6): 1188 − 1201.
[8] 沈晓媛, 阮赞誉, 林蔚红. 茚虫威及其复配制剂对稻纵卷叶螟的田间防效[J]. 南方农业, 2020, 14(14): 41 − 42.
[9] 沈瑞, 刘茹婷, 王学杨, 等. 农药对家蚕的毒性研究进展[J]. 中国蚕业, 2021, 42(2): 58 − 65.
[10] 黄深惠, 蒋满贵, 黄旭华, 等. 桑园周边作物使用农药对蚕桑生产的影响[J]. 广西蚕业, 2019, 56(1): 63 − 67.
[11] 黄深惠, 蒋满贵. 谨防家蚕农药中毒, 保障蚕业生产安全[J]. 广西蚕业, 2020, 57(3): 33.
[12] 唐震. 农药种类对蚕业生产的影响与建议[J]. 广东蚕业, 2020, 54(5): 3 − 4. doi:  10.3969/j.issn.2095-1205.2020.05.02
[13] 陈伟国, 戴建忠, 林蔚红, 等. 茚虫威及其复配剂对家蚕的毒性和安全性评价[J]. 蚕桑通报, 2018, 49(2): 28 − 32. doi:  10.3969/j.issn.0258-4069.2018.02.007
[14] 俞瑞鲜, 赵学平, 吴长兴, 等. 茚虫威对环境生物的安全性评价[J]. 农药, 2009, 48(1): 47 − 49. doi:  10.3969/j.issn.1006-0413.2009.01.015
[15] 陈丽萍, 赵学平, 吴长兴, 等. 6种农药对家蚕的毒性与安全性评价研究[J]. 农药科学与管理, 2006(3): 22 − 24.
[16] 石丽红. 茚虫威对映体在水稻上的选择性降解及对家蚕的毒性差异研究[D]. 贵阳: 贵州大学, 2018.
[17]

FAN Y, FENG Q, LAI K, et al. Toxic effects of indoxacarb enantiomers on the embryonic development and induction of apoptosis in Zebrafish larvae (Danio rerio) [J]. Environmental toxicology, 2017, 32(1): 7 − 16. doi:  10.1002/tox.22207
[18] 张钰萍, 张万敏, 柳敏, 等. 茚虫威对映体对斑马鱼毒性的手性选择性试验[J]. 农药, 2015, 54(4): 278 − 281.
[19] 贾波. 多壁碳纳米管对茚虫威在斑马鱼中对映体选择性富集及毒性的影响[D]. 呼和浩特: 内蒙古大学, 2019.
[20]

YE J, ZHAO M, NIU L L, et al. Enantioselective environmental toxicology of chiral pesticides [J]. Chemical Research in Toxicology, 2015, 28(3): 325 − 338. doi:  10.1021/tx500481n
[21]

DE ALBUQUERQUE N C P, CARRÃO D B, HABENSCHUS M D, et al. Metabolism studies of chiral pesticides: A critical review [J]. Journal of Pharmaceutical and Biomedical Analysis, 2018, 147: 89 − 109. doi:  10.1016/j.jpba.2017.08.011
[22] 张骞. 农药对家蚕的慢性毒性试验方法和吡虫啉等对家蚕的慢性毒性研究[D]. 泰安: 山东农业大学, 2012.
[23]

CHI YY, QIAO K, JIANG H, et al. Comparison of two acute toxicity test methods for the silkworm (Lepidoptera: Bombycidae) [J]. Journal of Economic Entomology, 2015, 108(1): 145 − 149. doi:  10.1093/jee/tou016
[24] 冯青. 手性农药茚虫威对斑马鱼毒性研究[D]. 海口: 海南大学, 2015.
[25]

MILKOVIC L, CIPAK GASPAROVIC A, CINDRIC M, et al. Short overview of ROS as cell function regulators and their implications in therapy concepts [J]. Cells, 2019, 8(8): 793. doi:  10.3390/cells8080793
[26]

WANG H, LI F, QU J, et al. The mechanism of damage by trace amounts of acetamiprid to the midgut of the silkworm, Bombyx mori [J]. Environmental Toxicology, 2019, 34(9): 1043 − 1051. doi:  10.1002/tox.22775
[27]

LI B, YU X, GUI S, et al. Molecular mechanisms of phoxim-induced silk gland damage and TiO2 nanoparticle-attenuated damage in Bombyx mori [J]. Chemosphere, 2014, 104: 221 − 227. doi:  10.1016/j.chemosphere.2013.11.030
[28]

DEMIRCI Ö, GÜVEN K, ASMA D, et al. Effects of endosulfan, thiamethoxam, and indoxacarb in combination with atrazine on multi-biomarkers in Gammarus kischineffensis [J]. Ecotoxicology and Environmental Safety, 2018, 147: 749 − 758. doi:  10.1016/j.ecoenv.2017.09.038
[29]

MELIKA G, ALI TAHERI M, SEYED HOSSEIN H, et al. Expression of immune, antioxidant and stress related genes in different organs of common carp exposed to indoxacarb [J]. Aquatic Toxicology, 2019, 20(8): 208 − 216.
[30]

MUTHUSAMY R, RAJAKUMAR S. Antioxidative response in a silkworm, Bombyx mori larvae to dichlorvos insecticide [J]. Free Radicals and Antioxidants, 2016, 6(1): 58 − 63. doi:  10.5530/fra.2016.1.7
[31] 曹树煜, 刘均洪. 过氧化物酶应用的生物技术进展[J]. 化学工业与工程技术, 2003(5): 28 − 33.
[32]

LYDY M, BELDEN J, WHEELOCK C, et al. Challenges in regulating pesticide mixtures [J]. Ecology and Society, 2004, 9(6): 1. doi:  10.5751/ES-00694-090601
[33]

HERNÁNDEZ AF, GIL F, LACASAÑA M, et al. Toxicological interactions of pesticide mixtures: an update [J]. Archives of Toxicology, 2017, 91(10): 3211. doi:  10.1007/s00204-017-2043-5
[34] 苏连水, 杨桂玲, 吴声敢, 等. 三唑磷和氯氟氰菊酯对蚯蚓的联合毒性效应[J]. 生态毒理学报, 2016, 11(3): 294 − 301.
[35]

ZENG J Y, ZHANG F M, WU Y, et al. Synergy mechanism of abamectin and triflumuron on Lymantria dispar larvae [J]. Scientia Silvae Sinicae, 2018, 54(12): 110 − 115.
[36]

XU M Y, WANG P, SUN Y J, et al. Redox status in liver of rats following subchronic exposure to the combination of low dose dichlorvos and deltamethrin [J]. Pesticide Biochemistry and Physiology, 2015, 124: 60 − 65. doi:  10.1016/j.pestbp.2015.04.005
[37]

ELHALWAGY M E A, ZAKI N I. Comparative study on pesticide mixture of organophosphorus and pyrethroid in commercial formulation [J]. Environmental Toxicology and Pharmacology, 2009, 28(2): 219 − 224. doi:  10.1016/j.etap.2009.04.007