-
在气候变化背景下,降水格局不断改变,干旱灾害发生的频率和强度日益增加[1]。水分是影响植物生长的主要环境因素之一,因此水分亏缺会对植物的生长发育和生存造成重要影响[2]。非结构性碳水化合物 (nonstructural carbohydrates,NSC)作为植物体内的碳存储物质,表征植物体内碳收支和碳平衡状态。非结构性碳水化合物主要包括葡萄糖、果糖、蔗糖等可溶性糖(soluble sugars,SS) 和淀粉(starch,ST)两类物质。可溶性糖是光合作用的直接产物,可以直接参与植物生长、代谢过程,并具有调节细胞渗透压的重要作用;淀粉是植物体内的主要储能物质,而且可溶性糖与淀粉两者之间可以相互转换而且可溶性糖与淀粉两者之间可以相互转换[3]。有研究认为,长期干旱胁迫下光合速率会先于呼吸速率下降,从而造成非结构性碳水化合物含量下降,当非结构性碳水化合物不能满足细胞的代谢需求时,就会发生“碳饥饿(carbon starvation) ”,导致植物死亡[4]。比如MITCHELL等[5]的研究表明辐射松(Pinus radiata)干旱死亡时,非结构性碳水化合物含量降低了约50%。而ADAMS等[6]对可食松(Pinus edulis)的研究发现,干旱胁迫使得植物非结构性碳水化合物含量下降了近30%,并认为“碳饥饿”是导致植物死亡的原因。然而,也有研究发现,细胞生长比光合作用和呼吸作用对细胞膨压的依赖性和敏感性更高,因此干旱胁迫下生长会先于光合作用受到抑制,造成碳水化合物的需求小于供给,从而导致非结构性碳水化合物的积累[7]。比如李亚楠等[8]对麻栎(Quercus acutissima)的研究表明干旱胁迫不仅不会造成“碳饥饿”现象,反而可以显著提高植物非结构性碳水化合物含量,并认为非结构性碳水化合物积累是植物应对干旱胁迫的策略之一,但GRUBER等[9]对欧洲赤松(Pinus sylvestris)的研究发现,干旱死亡时其组织器官非结构性碳水化合物含量并未降低,“碳饥饿”并非导致其死亡的原因。因此,尽管目前很多研究表明,水力失衡(hydraulic failure,即木质部栓塞阻碍水分传输,并进一步引起细胞脱水死亡)[10]是植物死亡的主要机制,但是植物死亡过程中“碳饥饿”是否发生或者有何贡献仍未有一致性结论。近年来我国亚热带地区降水呈减少趋势[11],对该地区树木生长造成一定影响。江西省属亚热带湿润季风气候,季节性干旱频发[12]。本研究以亚热带和江西地区常见落叶树种和常绿树种为研究对象,通过盆栽实验,人为控制水分条件,探究各树种在致死性干旱胁迫过程中可溶性糖、淀粉、非结构性碳水化合物含量及可溶性糖与淀粉比例变化规律,为进一步揭示亚热带常见树种幼苗干旱死亡的生理机制提供科学参考。
HTML
-
除茎的SS外,不同树种的根和叶的可溶性糖含量存在显著差异(表1),但各器官的可溶性糖含量对干旱胁迫的响应有所不同(图1)。无患子、枫香叶片的SS含量对致死性干旱的响应并不显著。干旱死亡时,相对于CK,深山含笑、苦槠、杜英、樟树的叶片的可溶性糖含量分别下降79.3%、18.1%、14.2%和64.4%,但木荷、青冈栎的叶片的可溶性糖含量分别上升47.7%、37.9%。相对于CK,干旱处理的无患子、木荷、青冈栎的茎的可溶性糖含量分别上升44.1%、16.8%和47.5%,但枫香、杜英、樟树的茎的可溶性糖含量与CK相比无显著差别。而深山含笑、苦槠的茎的可溶性糖含量却分别下降41.4%、65.3%。再则,与CK相比,无患子、枫香、木荷的根的可溶性糖含量显著上升,其中木荷根的可溶性糖含量上升147.3%,上升幅度最大。深山含笑、杜英、樟树的根的可溶性糖含量显著下降,其中樟树根的可溶性糖含量下降48.5%,下降幅度最大。而苦槠、青冈栎的根的可溶性糖含量无显著变化(图1)。
器官
Organ因子
Factor可溶性糖 SS 淀粉 ST 非结构性碳水化合物 NSC 可溶性糖/淀粉 SS/ST F p F p F P F p 叶 Leaf 处理 Treatment 24.073 0.000 60.497 0.000 11.571 0.000 62.518 0.000 树种 Species 27.798 0.000 264.542 0.000 141.053 0.000 160.228 0.000 处理×树种 Treatment×species 22.474 0.000 55.601 0.000 23.003 0.000 60.546 0.000 茎 Stem 处理 Treatment 16.132 0.000 125.870 0.000 58.381 0.000 126.493 0.000 树种 Species 0.925 0.343 512.780 0.000 252.381 0.000 74.348 0.000 处理×树种 Treatment×species 2.313 0.050 80.257 0.000 54.778 0.000 12.104 0.000 根 Root 处理 Treatment 66.822 0.003 101.865 0.000 76.382 0.002 118.503 0.000 树种 Species 10.408 0.000 72.950 0.000 11.060 0.000 87.025 0.000 处理×树种 Treatment×species 40.350 0.000 149.768 0.000 76.809 0.000 87.316 0.000 注:P<0.05 表示差异显著;F 越大表示处理间效果差异越显著。
Note: P<0.05 indicates significant difference; higher F values indicate more significant difference between the treatments.Table 1. ANOVA for the main and interactive effects of water treatment and species on contents of NSC and related components
-
不同树种幼苗的叶、茎、根的ST含量对干旱胁迫的响应存在一定差异(图2)。致死性干旱会显著升高无患子的叶、根、茎的淀粉含量;无患子幼苗死亡时,其叶、根、茎的淀粉含量分别较CK上升了35.9%、228.2%和15.0%。枫香、深山含笑、苦槠、青冈栎的叶、根、茎的淀粉含量在干旱胁迫下均较CK处理显著下降,其中枫香和深山含笑的下降趋势较显著,枫香和深山含笑的幼苗死亡时,枫香和深山含笑的叶、根、茎的淀粉含量分别下降至CK的25.9%、63.2%、29.4%和55.6%、36.5%、23.1%。干旱胁迫下,木荷、樟树的叶片的淀粉含量与CK无显著差异,但木荷、樟树的根、茎的淀粉含量显著低于CK。而杜英的叶、茎的淀粉含量较CK显著降低,但杜英的根的淀粉含量对干旱胁迫的响应不显著。
-
干旱胁迫会使无患子的叶、根、茎和木荷的叶、根的非结构性碳水化合物含量显著高于CK;其中无患子的根的非结构性碳水化合物含量对干旱胁迫较敏感,在干旱致死时,无患子的根的非结构性碳水化合物含量上升了152.9%。干旱胁迫会显著降低枫香的叶、茎和杜英、深山含笑、苦槠、青冈栎、樟树的叶、根、茎的非结构性碳水化合物含量。其中深山含笑的变化最显著,深山含笑的幼苗死亡时,其叶、茎、根的非结构性碳水化合物含量分别下降至CK的43.3%、29.6%、41.6%(图3)。
-
可溶性糖与淀粉含量比值(SS/ST)的数值越大,表明植物体内可溶性糖含量占比越高,同时由于植物体内的可溶性糖和淀粉之间可以相互转化,SS/ST也可以反映其转化情况。总的来说,干旱胁迫下,不同树种幼苗的SS/ST变化趋势存在一定差异(图4)。干旱胁迫使无患子和樟树的茎的SS/ST较CK上升,而无患子和樟树的叶、根的SS/ST较CK下降,其中樟树的叶的SS/ST下降幅度最大,即实验结束时,D处理较CK下降了45.7%。D处理的枫香、苦槠、木荷、青冈栎的叶、茎、根的SS/ST显著高于CK。其中枫香的SS/ST上升趋势最为明显,枫香的叶、茎、根的SS/ST分别较CK上升了227.8%、288.9%、152.8%。干旱胁迫使深山含笑的茎、根的SS/ST上升,但其叶的SS/ST则下降;杜英幼苗的叶、茎的SS/ST上升而其根的SS/ST则下降。