[1] |
IPCC. Contribution of Working Group Ⅲ to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[M]//Climate Change 2014: Mitigation of Climate Change. Cambridge: Cambridge University Press, 2014. |
[2] |
沈超, 纪若璇, 于笑, 等. 蒙古莸幼苗干旱致死过程中非结构性碳水化合物的变化[J]. 应用生态学报, 2019, 30(8): 2541 − 2548. |
[3] |
王凯, 赵成姣, 林婷婷, 等. 水分处理对榆树幼苗不同器官非结构性碳水化合物的影响[J]. 干旱区研究, 2019, 36(1): 113 − 121. |
[4] |
MCDOWELL N G. Mechanisms linking drought, hydraulics, carbon metabolism, and vegetation mortality [J]. Plant Physiology, 2011, 155(3): 1051 − 1059. doi: 10.1104/pp.110.170704 |
[5] |
MITCHELL P J, O’GRADY A P, TISSUE D T, et al. Drought response strategies define the relative contributions of hydraulic dysfunction and carbohydrate depletion during tree mortality [J]. New Phytol, 2013, 197(3): 862 − 872. doi: 10.1111/nph.12064 |
[6] |
ADAMS H D, GERMINO M J, BRESHEARS D D, et al. Nonstructural leaf carbohydrate dynamics of Pinus edulis during drought-induced tree mortality reveal rate for carbon metabolism in mortality mechanism [J]. New Phytol, 2013, 197(3): 1142 − 1151. |
[7] |
AYUB G, SMITH R A, TISSUE D T, et al. Impacts of drought on leaf respiration in darkness and light in Eucalyptus saline exposed to industrial-age atmospheric CO2 and growth temperature [J]. New Phytologist, 2011, 190(4): 1003 − 1018. doi: 10.1111/j.1469-8137.2011.03673.x |
[8] |
李亚楠, 张淞著, 张藤子, 等. 干旱—高钙对麻栎幼苗非结构性碳水化合物含量和分配的影响[J]. 生态学报, 2020, 40(7): 2277 − 2284. |
[9] |
GRUBER A, PIRKEBNER D, FLORIAN C, et al. No evidence for depletion of carbohydrate pools in Scots pine (Pinus sylvestris L.) under drought stress [J]. Plant Biology, 2012, 14(1): 142 − 148. |
[10] |
MCDOWELL N, POCKMAN W T, ALLEN C D, et al. Mechanisms of plant survival and mortality during drought: Why do some plants survive while others succumb to drought? [J]. New Phytologist, 2008, 178(4): 719 − 739. doi: 10.1111/j.1469-8137.2008.02436.x |
[11] |
赵东升, 高璇, 吴绍洪, 等. 基于自然分区的1960—2018年中国气候变化特征[J]. 地球科学进展, 2020, 35(7): 750 − 760. |
[12] |
郭建明, 郑博福, 林伟, 等. 近26年来南昌市气候变化特征[J]. 安徽农业科学, 2010, 38(36): 20978 − 20981. doi: 10.3969/j.issn.0517-6611.2010.36.171 |
[13] |
ANDEREGG W R, ANDEREGG L D. Hydraulic and carbohydrate changes in experimental drought-induced mortality of saplings in two conifer species [J]. Tree Physiology, 2013, 33(3): 252 − 260. doi: 10.1093/treephys/tpt016 |
[14] |
DUAN H, CHASZAR B, LEWIS J D, et al. CO2 and temperature effects on morphological and physiological traits affecting risk of drought-induced mortality [J]. Tree Physiology, 2018, 38(8): 1138 − 1151. doi: 10.1093/treephys/tpy037 |
[15] |
宋琳, 雒文涛, 马望, 等. 极端干旱对草甸草原优势植物非结构性碳水化合物的影响[J]. 植物生态学报, 2020, 44(6): 669 − 676. |
[16] |
段洪浪, 吴建平, 刘文飞, 等. 干旱胁迫下树木的碳水过程以及干旱死亡机理[J]. 林业科学, 2015, 51(11): 113 − 120. |
[17] |
PIPER F I, FAJARDO A, HOCH G. Single-provenance mature conifers show higher non-structural carbohydrate storage and reduced growth in a drier location [J]. Tree Physiology, 2017, 37(8): 1 − 10. |
[18] |
王昕, 孙永林, 刘西平. 土壤含水量对刺槐光合能力和碳水化合物分配的影响[J]. 西北林学院学报, 2015, 30(1): 20 − 25. doi: 10.3969/j.issn.1001-7461.2015.01.04 |
[19] |
杨斌, 彭长辉, 张贤, 等. 干旱胁迫对刺槐幼苗叶片氮含量、光合速率及非结构性碳水化合物的影响[J]. 应用与环境生物学报, 2019, 25(6): 1261 − 1269. |
[20] |
DU Y, LU R, XIA J. Impacts of global environmental change drivers on non‐structural carbohydrates in terrestrial plants [J]. Functional Ecology, 2020, 34(8): 1 − 12. |
[21] |
NARDINI A, CASOLO V, DAL BORGO A, et al. Rooting depth, water relations and non-structural carbohydrate dynamics in three woody angiosperms differentially affected by an extreme summer drought [J]. Plant Cell & Environment, 2015, 39(3): 618 − 627. |
[22] |
董彦红, 刘彬彬, 张旭, 等. 黄瓜幼苗非结构性碳水化合物代谢对干旱胁迫与CO2倍增的响应[J]. 应用生态学报, 2015, 26(1): 53 − 60. |
[23] |
刘金玉, 付培立, 王玉杰, 等. 热带喀斯特森林常绿和落叶榕树的水力特征和水分关系与抗旱策略[J]. 植物科学学报, 2012, 30(5): 484 − 493. |
[24] |
MARTINEZ-VILALTA, SALA, ASENSIO, et al. Dynamics of non-structural carbohydrates in terrestrial plants: a global synthesis [J]. ECOL MONOGR, 2016, 86(4): 495 − 516. |
[25] |
王凯, 林婷婷, 吕林有, 等. 水分胁迫对杨树幼苗非结构性碳水化合物分配的影响[J]. 生态学杂志, 2019, 38(11): 3283 − 3290. |
[26] |
王宗琰, 王凯, 姜涛, 等. 油松幼苗非结构性碳水化合物对干旱胁迫的阶段性响应[J]. 植物研究, 2018, 38(3): 460 − 466. doi: 10.7525/j.issn.1673-5102.2018.03.019 |
[27] |
O'BRIEN, MICHAEL J, LEUZINGER S, et al. Drought survival of tropical tree seedlings enhanced by non-structural carbohydrate levels [J]. Nature Climate Change, 2014, 4(8): 710 − 714. doi: 10.1038/nclimate2281 |
[28] |
PIPER F I. Drought induces opposite changes in the concentration of non-structural carbohydrates of two evergreen Nothofagus species of differential drought resistance [J]. Annals of Forest Science, 2011, 68(2): 415 − 424. doi: 10.1007/s13595-011-0030-1 |
[29] |
代永欣, 王林, 万贤崇. 干旱导致树木死亡机制研究进展[J]. 生态学杂志, 2015, 34(11): 3228 − 3236. |