Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Name
E-mail
Phone
Title
Content
Verification Code
Volume 12 Issue 1
Apr.  2021
Turn off MathJax
Article Contents

DU Yannan, WANG Meng, MA Jianqiang, ZHANG Yu, LIANG Xiaoyu. Research progress on early detection technologies for plant fungi and their application in forecasting of rubber tree anthracnose[J]. Journal of Tropical Biology, 2021, 12(1): 124-131. doi: 10.15886/j.cnki.rdswxb.2021.01.018
Citation: DU Yannan, WANG Meng, MA Jianqiang, ZHANG Yu, LIANG Xiaoyu. Research progress on early detection technologies for plant fungi and their application in forecasting of rubber tree anthracnose[J]. Journal of Tropical Biology, 2021, 12(1): 124-131. doi: 10.15886/j.cnki.rdswxb.2021.01.018

Research progress on early detection technologies for plant fungi and their application in forecasting of rubber tree anthracnose

doi: 10.15886/j.cnki.rdswxb.2021.01.018
  • Received Date: 2020-05-18
  • Rev Recd Date: 2020-07-24
  • Available Online: 2021-04-07
  • Publish Date: 2021-04-12
  • Fungi are one class of important plant pathogens, which accounts for two thirds of all plant diseases. The rapid and accurate early detection technologies for plant fungal diseases are the key to disease prediction and prevention of disease prevalence. The detection principle, application status and existing problems of common early detection technologies for fungal diseases were reviewed. The detection system of fluorescence quantitative PCR and its application prospect in the prediction model for rubber tree anthracnose were summarized, which provides reference for the early detection and prediction of rubber tree anthracnose.
  • [1] CAI Z, LI G, LIN C, et al. Identifying pathogenicity genes in the rubber tree anthracnose fungus Colletotrichum gloeosporioides through random insertional mutagenesis [J]. Microbiological Research, 2013, 168(6): 340 − 350. doi:  10.1016/j.micres.2013.01.005
    [2] LIEBEREI R. South American leaf blight of the rubber tree (Hevea spp.): New steps in plant domestication using physiological features and molecular markers [J]. Annals of Botany, 2007, 100(6): 1125 − 1142. doi:  10.1093/aob/mcm133
    [3] LIU X, LI B, CAI J, et al. Colletotrichum species causing anthracnose of rubber trees in China [J]. Scientific Reports, 2018, 8(1): 10435 − 10449. doi:  10.1038/s41598-018-28166-7
    [4] THAMBUGALA T A D P and DESHAPPRIYA N. The role of Colletotrichum species on the Colletotrichum leaf disease of Hevea brasiliensis - a preliminary study [J]. Journal of the National Science Foundation of Sri Lanka, 2009, 37(2): 135 − 138. doi:  10.4038/jnsfsr.v37i2.1070
    [5] GUYOT J, OMANDA E N, NDOUTOUME A, et al. Effect of controlling Colletotrichum leaf fall of rubber tree on epidemic development and rubber production [J]. Crop Protection, 2001, 20(7): 581 − 590. doi:  10.1016/S0261-2194(01)00027-8
    [6] DAUCH A L, AHN B and WATSON A K. Molecular monitoring of wild-type and genetically engineered Colletotrichum coccodes biocontrol strains in planta [J]. Plant Disease, 2006, 90(12): 1504 − 1510. doi:  10.1094/PD-90-1504
    [7] WHARTON P S, DIÉGUEZ-URIBEONDO J. The biology of Colletotrichum acutatum [J]. Anales del Jardín Botánico de Madrid, 2004, 61(1): 3 − 22.
    [8] PEI M H, RUIZ C, HARRIS J, et al. Quantitative inoculations of poplars with Melampsora larici-populina [J]. European Journal of Plant Pathology, 2003, 109(3): 269 − 276. doi:  10.1023/A:1022822503139
    [9] SCHMITZ O, DANNEBERG G, HUNDESHAGEN B, et al. Quantification of vesicular-arbuscular mycorrhiza by biochemical parameters [J]. Journal of Plant Physiology, 1991, 139(1): 106 − 114. doi:  10.1016/S0176-1617(11)80174-4
    [10] SHANKAL M, GREGORY A, KALKHOVEN M J, et al. A competitive ELISA for detecting resistance to latent stem infection by Diaporthe toxica in narrow-leafed lupins [J]. Australasian Plant Pathology, 1998, 27(4): 251 − 258. doi:  10.1071/AP98028
    [11] GABLER J, KAČERGIUS A AND JOVAIŠIENĖ Z. Detection of Phomopsis vaccinii on blueberry and cranberry in Europe by direct tissue blot immunoassay and plate-trapped antigen ELISA [J]. Journal of Phytopathology, 2004, 152(11): 630 − 632.
    [12] BRILL L M. Analysis of two ELISA formats and antigen preparations using polyclonal antibodies against Phomopsis longicolla [J]. Phytopathology, 1994, 84(2): 1047 − 1056.
    [13] LOMMEL S A, MCCAIN A H AND MORRIS T J. Evaluation of indirect enzyme-linked immunosorbent assay for the detection of plant viruses [J]. Phytopathology, 1982, 72(8): 1018 − 1022. doi:  10.1094/Phyto-72-1018
    [14] LISTER R M AND ROCHOW W F. Detection of barley yellow dwarf virus by enzyme-linked immunosorbent assay [J]. Phytopathology, 1979, 69(6): 649 − 654. doi:  10.1094/Phyto-69-649
    [15] HANSE B, RAAIJMAKERS E E M, SCHOONE A H L, et al. Stemphylium spp., the cause of yellow leaf spot disease in sugar beet (Beta vulgaris L.) in the Netherlands [J]. European Journal of Plant Pathology, 2015, 142(2): 319 − 330. doi:  10.1007/s10658-015-0617-8
    [16] SAKAMOTO S, PUTALUN W, VIMOLMANGKANG S, et al. Enzyme-linked immunosorbent assay for the quantitative/qualitative analysis of plant secondary metabolites [J]. Journal of Natural Medicines, 2017, 72(2): 32 − 42.
    [17] KITISRIPANYA T, KRITTANAI S, UDOMSIN O, et al. Development of an enzyme-linked immunosorbent assay for determination of miroestrol using an anti-miroestrol monoclonal antibody [J]. Planta Medica, 2017, 83(10): 855 − 861. doi:  10.1055/s-0043-102689
    [18] GREEN H AND JENSEN D F A. Tool for monitoring Trichoderma hanianum: Ⅱ. The use of a GUS transformant for ecological studies in the rhizosphere [J]. Phytopalhology, 1995, 85: 1436 − 1440. doi:  10.1094/Phyto-85-1436
    [19] FREEMAN S, MAIMON M AND PINKAS Y. Use of GUS transformants of Fusarium subglutinans for determining etiology of mango malformation disease [J]. Phytopathology, 1999, 89(6): 456 − 461. doi:  10.1094/PHYTO.1999.89.6.456
    [20] CHALFIE M T Y, EUSKIRCHEN G, WARD W W, et al. Green fluorescent protein as marker for gene expression [J]. Science, 1994, 263(11): 802 − 805.
    [21] OLIVAIN C, HUMBERT C, NAHALKOVA J, et al. Colonization of tomato root by pathogenic and nonpathogenic Fusarium oxysporum strains inoculated together and separately into the soil [J]. Applied and Environmental Microbiology, 2006, 72(2): 1523 − 1531. doi:  10.1128/AEM.72.2.1523-1531.2006
    [22] CHEN N, HSIANG T AND GOODWIN P H. Use of green fluorescent protein to quantify the growth of Colletotrichum during infection of tobacco [J]. Journal of Microbiological Methods, 2003, 53(1): 113 − 122. doi:  10.1016/S0167-7012(02)00234-8
    [23] SIGAL H, STANLEY F AND AMIR S. Use of green fluorescent protein-transgenic strains to study pathogenic and nonpathogenic lifestyles in Colletotrichum acutatum [J]. Phytopathology, 2002, 92(7): 743 − 749. doi:  10.1094/PHYTO.2002.92.7.743
    [24] PARIKKA P AND LEMMETTY A. Tracing latent infection of Colletotrichum acutatum on strawberry by PCR [J]. European Journal of Plant Pathology, 2004, 110(4): 393 − 398. doi:  10.1023/B:EJPP.0000021073.67137.d2
    [25] PARAN I AND MICHELMORE R W. Development of reliable PCR-based markers linked to downy mildew resistance genes in lettuce [J]. Theoretical and Applied Genetics, 1993, 85(8): 985 − 993. doi:  10.1007/BF00215038
    [26] MERLIER D D, CHANDELIER A, DEBRUXELLES N, et al. Characterization of Alder Phytophthora isolates from Wallonia and development of SCAR primers for their specific detection [J]. Journal of Phytopathology, 2005, 153(2): 99 − 107. doi:  10.1111/j.1439-0434.2005.00936.x
    [27] SPADARO D, PELLEGRINO C, GARIBALDI A, et al. Development of SCAR primers for the detection of Cadophora luteo-olivacea on kiwifruit and pome fruit and of Cadophora malorum on pome fruit [J]. Phytopathologia Mediterranea, 2011, 50(3): 430 − 441.
    [28] NITHYA K, BUKHARI K A I M, VALLUVAPARIDASAN V, et al. Molecular detection of Colletotrichum falcatum causing red rot disease of sugarcane (Saccharum officinarum) using a SCAR marker [J]. Annals of Applied Biology, 2012, 160(2): 168 − 173. doi:  10.1111/j.1744-7348.2011.00529.x
    [29] PÉREZ-HERNÁNDEZ O, NAM M H, GLEASON M L, et al. Development of a nested polymerase chain reaction assay for detection of Colletotrichum acutatum on symptomless strawberry leaves [J]. Plant Disease, 2008, 92(12): 1655 − 1661. doi:  10.1094/PDIS-92-12-1655
    [30] 张磊, 常有宏, 刘邮洲, 等. 梨轮纹病和炭疽病病原菌PCR检测[J]. 江苏农业学报, 2012, 28(2): 415 − 420. doi:  10.3969/j.issn.1000-4440.2012.02.032
    [31] CHEN Y Y, CONNER R L, GILLARD C L, et al. A specific and sensitive method for the detection of Colletotrichum lindemuthianum in dry bean tissue [J]. Plant Disease, 2007, 91(10): 1271 − 1276. doi:  10.1094/PDIS-91-10-1271
    [32] TOMITA N, MORI Y, KANDA H, et al. Loop-mediated isothermal amplification (LAMP) of gene sequences and simple visual detection of products [J]. Nature Protocols, 2008, 3(5): 877 − 882. doi:  10.1038/nprot.2008.57
    [33] KHAN M, LI B, JIANG Y, et al. Evaluation of different PCR-based assays and LAMP method for rapid detection of Phytophthora infestans by targeting the Ypt1 gene [J]. Frontiers in Microbiology, 2017, 8: 1920 − 1931. doi:  10.3389/fmicb.2017.01920
    [34] SI AMMOUR M, BILODEAU G J, TREMBLAY D M, et al. Development of real-time isothermal amplification assays for on-site detection of Phytophthora infestans in potato leaves [J]. Plant Disease, 2017, 101(7): 1269 − 1277. doi:  10.1094/PDIS-12-16-1780-RE
    [35] TIAN Q, LU C, WANG S, et al. Rapid diagnosis of soybean anthracnose caused by Colletotrichum truncatum using a loop-mediated isothermal amplification (LAMP) assay [J]. European Journal of Plant Pathology, 2016, 148(4): 785 − 793.
    [36] KHAN M, WANG R, LI B, et al. Comparative evaluation of the LAMP assay and PCR-based assays for the rapid detection of Alternaria solani [J]. Front Microbiol, 2018, 9: 2089 − 2100. doi:  10.3389/fmicb.2018.02089
    [37] DEBODE J, VAN HEMELRIJCK W, BAEYEN S, et al. Quantitative detection and monitoring of Colletotrichum acutatum in strawberry leaves using real-time PCR [J]. Plant Pathology, 2009, 58(3): 504 − 514. doi:  10.1111/j.1365-3059.2008.01987.x
    [38] CHEN Y Y, CONNER R L, GILLARD C L, et al. A quantitative real-time PCR assay for detection of Colletotrichum lindemuthianumin navy bean seeds [J]. Plant Pathology, 2013, 62(4): 900 − 907. doi:  10.1111/j.1365-3059.2012.02692.x
    [39] SRINIVASAN M, KOTHANDARAMAN S V, VAIKUNTAVASAN P, et al. Development of conventional and real-time PCR protocols for specific and sensitive detection of Colletotrichum capsici in chilli (Capsicum annuum L) [J]. Phytoparasitica, 2014, 42(4): 437 − 444. doi:  10.1007/s12600-013-0380-3
    [40] OO M M, LIM G, JANG H A, et al. Characterization and pathogenicity of new record of anthracnose on various chili varieties caused by Colletotrichum scovillei in Korea [J]. Mycobiology, 2017, 45(3): 184 − 191. doi:  10.5941/MYCO.2017.45.3.184
    [41] DIAO Y Z, ZHANG C, LIU F, et al. Colletotrichum species causing anthracnose disease of chili in China [J]. Persoonia Molecular Phylogeny & Evolution of Fungi, 2017, 38: 20 − 37.
    [42] WANG Y C, HAO X Y, WANG L, et al. Diverse Colletotrichum species cause anthracnose of tea plants (Camellia sinensis (L) O Kuntze) in China [J]. Scientific Reports, 2016, 6: 35287 − 35300. doi:  10.1038/srep35287
    [43] HYDE K D. Colletotrichum: a catalogue of confusion [J]. Fungal Diversity, 2009, 39: 1 − 17.
    [44] NIU X, GAO H, QI J, et al. Colletotrichum species associated with jute (Corchorus capsularis L) anthracnose in southeastern China [J]. Scientific Reports, 2016, 6: 25179 − 25188. doi:  10.1038/srep25179
    [45] MARTINEZ-CULEBRAS P V, BARRIO E, GARCIA M D, et al. Identification of Colletotrichum species responsible for anthracnose of strawberry based on the internal transcribed spacers of the ribosomal region [J]. FEMS Microbiol Lett, 2000, 189(1): 97 − 101. doi:  10.1111/j.1574-6968.2000.tb09213.x
    [46] SCHOCH C L, SEIFERT K A, HUHNDORF S, et al. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi [J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(16): 6241 − 6246. doi:  10.1073/pnas.1117018109
    [47] SREENIVASAPRASAD S, TALHINHAS P. Genotypic and phenotypic diversity in Colletotrichum acutatum, a cosmopolitan pathogen causing anthracnose on a wide range of hosts [J]. Molecular Plant Pathology, 2005, 6(4): 361 − 378. doi:  10.1111/j.1364-3703.2005.00291.x
    [48] ZHU Z X, ZHENG L, HSIANG T, et al. Detection and quantification of Fusarium communein host tissue and infected soil using real-time PCR [J]. Plant Pathology, 2016, 65: 218 − 226. doi:  10.1111/ppa.12412
    [49] ZHANG X, HARRINGTON T C, BATZER J C, et al. Detection of Colletotrichum acutatum sensu lato on strawberry by loop-mediated isothermal amplification [J]. Plant Disease, 2016, 100(9): 1804 − 1812. doi:  10.1094/PDIS-09-15-1013-RE
    [50] SCARLETT K, TESORIERO L, DANIEL R, et al. Detection and quantification of Fusarium oxysporum f sp cucumerinum in environmental samples using a specific quantitative PCR assay [J]. European Journal of Plant Pathology, 2013, 137(2): 315 − 324. doi:  10.1007/s10658-013-0244-1
    [51] NATH V S, HEGDE V M, JEEVA M L, et al. Rapid and sensitive detection of Phytophthora colocasiae responsible for the taro leaf blight using conventional and real-time PCR assay [J]. FEMS Microbiol Lett, 2014, 352(2): 174 − 183. doi:  10.1111/1574-6968.12395
    [52] JIMÉNEZ-FERNÁNDEZ D, MONTES-BORREGO M, NAVAS-CORTÉS J A, et al. Identification and quantification of Fusarium oxysporum in planta and soil by means of an improved specific and quantitative PCR assay [J]. Applied Soil Ecology, 2010, 46(3): 372 − 382. doi:  10.1016/j.apsoil.2010.10.001
    [53] YANG H C, HAUDENSHIELD J S AND HARTMAN G L. Multiplex real-time PCR detection and differentiation of Colletotrichum species infecting soybean [J]. Plant Disease, 2015, 99(11): 1559 − 1568. doi:  10.1094/PDIS-11-14-1189-RE
    [54] LIU L, YAN Y, HUANG J, et al. A novel MFS transporter gene ChMfs1 is important for hyphal morphology, conidiation, and pathogenicity in Colletotrichum higginsianum [J]. Frontiers in Microbiology, 2017, 8: 1953 − 1964. doi:  10.3389/fmicb.2017.01953
    [55] LIU F, TANG G, ZHENG X, et al. Molecular and phenotypic characterization of Colletotrichum species associated with anthracnose disease in peppers from Sichuan province, China [J]. Scientific Reports, 2016, 6: 32761 − 32778. doi:  10.1038/srep32761
    [56] PHOTITA W, LUM S, MCKENZIE E H C, et al. Are some endophytes of Musa acuminata latent pathogens? [J]. Fungal Diversity, 2004, 16: 131 − 140.
    [57] BARCELOS Q L, PINTO J M, VAILLANCOURT L J, et al. Characterization of Glomerella strains recovered from anthracnose lesions on common bean plants in Brazil [J]. PLoS One, 2014, 9(3): e90910. doi:  10.1371/journal.pone.0090910
    [58] WANG F, QIN G, SUI Z, et al. Improved method for assaying maize plant resistance to maize rough dwarf disease by artificial inoculation and real-time RT-PCR [J]. European Journal of Plant Pathology, 2006, 116(4): 289 − 300. doi:  10.1007/s10658-006-9060-1
    [59] HOSSAIN M M, SULTANA F, MIYAZAWA M, et al. Plant growth-promoting fungus Penicillium spp. GP15-1 enhances growth and confers protection against damping-off and anthracnose in the cucumber [J]. Journal of Oleo Science, 2014, 63(4): 391 − 400. doi:  10.5650/jos.ess13143
    [60] JIMÉNEZ-FERNÁNDEZ D, MONTES-BORREGO M, JIMÉNEZ-DÍAZ R M. In planta and soil quantification of Fusarium oxysporum f sp ciceris and evaluation of Fusarium wilt resistance in chickpea with a newly developed quantitative polymerase chain reaction assay [J]. Phytopathology, 2011, 101: 250 − 262. doi:  10.1094/PHYTO-07-10-0190
    [61] KOOMEN I, JEFFRIES P. Effects of antagonistic microorganisms on the postharvest development of Colletotrichum gloeosporioides on mango [J]. Plant Pathology, 1993, 42(2): 230 − 237. doi:  10.1111/j.1365-3059.1993.tb01495.x
    [62] LEANDRO L F, GLEASON M L, NUTTER F W, et al. Influence of temperature and wetness duration on conidia and appressoria of Colletotrichum acutatum on symptomless strawberry leaves [J]. Phytopathology, 2003, 93(4): 513 − 520. doi:  10.1094/PHYTO.2003.93.4.513
    [63] LEANDRO L F S, GLEASON M L, WEGULO S N, et al. Germination and sporulation of Colletotrichum acutatum on symptomless strawberry leaves [J]. Phytopathology, 2001, 91(7): 659 − 664. doi:  10.1094/PHYTO.2001.91.7.659
    [64] HYRE R A. Progress in forecasting late blight of potato and tomato [J]. Plant Disease, 1954, 38: 245 − 253.
    [65] WALLIN J R. Forecasting tomato and potato late blight in north-central region (Abs) [J]. Phytopathology, 1951, 47: 37 − 38.
    [66] 杨信东, 李葵花, 高洁, 等. 烟草野火病“天气促病指数”表解模型的建立[J]. 吉林农业大学学报, 2002, 2(2): 154 − 157.
    [67] FURUTA K, NAGASHIMA S, INUKAI T, et al. Construction of a system for the strawberry nursery production towards elimination of latent infection of anthracnose fungi by a combination of PCR and microtube hybridization [J]. The Plant Pathology Journal, 2017, 33(1): 80 − 86. doi:  10.5423/PPJ.NT.05.2016.0132
    [68] ELIAS L M, FORTKAMP D, SARTORI S B, et al. The potential of compounds isolated from Xylaria spp. as antifungal agents against anthracnose [J]. Biotechnology and Industrial Microbiology, 2018, 49(4): 840 − 847.
    [69] QIN B, ZHENG F AND ZHANG Y. Molecular cloning and characterization of a Mlo gene in rubber tree (Hevea brasiliensis) [J]. Journal of Plant Physiology, 2015, 175: 78 − 85. doi:  10.1016/j.jplph.2014.10.019
    [70] 范会雄, 李德威, 黄宏积, 等. 橡胶树炭疽病发生流行规律及防治研究[J]. 植物保护, 1996, 22(5): 31 − 32.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article views(969) PDF downloads(53) Cited by()

Proportional views
Related

Research progress on early detection technologies for plant fungi and their application in forecasting of rubber tree anthracnose

doi: 10.15886/j.cnki.rdswxb.2021.01.018

Abstract: Fungi are one class of important plant pathogens, which accounts for two thirds of all plant diseases. The rapid and accurate early detection technologies for plant fungal diseases are the key to disease prediction and prevention of disease prevalence. The detection principle, application status and existing problems of common early detection technologies for fungal diseases were reviewed. The detection system of fluorescence quantitative PCR and its application prospect in the prediction model for rubber tree anthracnose were summarized, which provides reference for the early detection and prediction of rubber tree anthracnose.

DU Yannan, WANG Meng, MA Jianqiang, ZHANG Yu, LIANG Xiaoyu. Research progress on early detection technologies for plant fungi and their application in forecasting of rubber tree anthracnose[J]. Journal of Tropical Biology, 2021, 12(1): 124-131. doi: 10.15886/j.cnki.rdswxb.2021.01.018
Citation: DU Yannan, WANG Meng, MA Jianqiang, ZHANG Yu, LIANG Xiaoyu. Research progress on early detection technologies for plant fungi and their application in forecasting of rubber tree anthracnose[J]. Journal of Tropical Biology, 2021, 12(1): 124-131. doi: 10.15886/j.cnki.rdswxb.2021.01.018
  • 真菌病害是植物病害中数量最大的一类,占植物病害总数的70%~80%。许多危害重、分布广的作物病害,如锈病、黑粉病、霜霉病、白粉病等都是由真菌引起的。与形态观察、次生代谢产物分析等常规检测技术不同,病原真菌的早期检测技术检测周期短、灵敏度高,能帮助快速检测到侵染初期或潜伏期的病原菌,并获悉其生长状态和发病阶段,以备人们有充分的时间采取科学合理的防治措施,最大限度地减少经济损失。因此,植物病原菌早期检测技术是防治病害大面积暴发的有效手段。从传统的组成物质观察和气相色谱检测到免疫学方法的建立,再到分子检测手段的不断成熟,病原菌早期检测技术越来越简便和精准,为建立植物病害的早期诊断方法和预测预报模型奠定了良好基础。

    橡胶树(Hevea brasiliensis)是天然橡胶的主要来源,天然橡胶是一种重要的战略资源,约占全球橡胶消费总量的40%,世界每年对天然橡胶的需求不断增长[1-2]。炭疽菌(Colletotrichum)侵染橡胶树引起的炭疽病(Colletotrichum leaf disease,CLD)是亚洲天然橡胶产量下降的主要原因[3-4],该病害可导致橡胶树叶片变形和坏死,进而发生次生性落叶,严重影响胶乳产量[5]。由于炭疽菌具有潜伏侵染能力,橡胶树炭疽病的预测预报一直存在较大的技术难点。橡胶树炭疽菌典型的作用方式为半活体营养型侵染,在侵染初期通过与宿主细胞共生逃避抗性机制,同时满足自身营养和能源需求,随后进行坏死型营养生长,迅速扩散并杀死宿主细胞[6-7]。炭疽菌具有潜伏期的存在和作用方式转换的特点,因此不易被发现;在气候条件适宜的情况下,极短的时间内即可暴发成灾;预测难度大,给炭疽病防治造成困难。因此,建立潜伏侵染状态下的炭疽菌检测技术成为了橡胶树炭疽病早期诊断和流行预测的关键所在。笔者综述了常用的植物病原真菌早期检测技术,包括基于菌体结构组成的检测技术和基于核酸序列PCR扩增的检测技术,比较了各种早期检测技术的优缺点,论述了实时荧光定量PCR早期检测技术建立的关键步骤及在橡胶树炭疽病预测预报模型中的应用潜力,为橡胶树炭疽菌早期检测技术和预测预报模型的建立奠定基础。

  • 基于菌体结构组成的早期检测技术主要包括结构定量法、酶联免疫吸附法、GUS染色法、荧光检测法等,这些技术在分子生物学检测方法出现以前被广泛应用于植物病原真菌的早期检测,在操作应用过程中具有明显的优缺点。结构定量法依赖于真菌子实体结构、甾醇或几丁质的定量[6-9],通过图像分析或气相色谱、液相色谱分析进行定量检测,操作过程繁琐、定量不够准确,特别是在病原真菌的活体营养阶段,定量较困难。酶联免疫吸附法(Enzyme-linked immunosorbent assay, ELISA)是通过抗原抗体特异性结合检测病原真菌[10-12]。操作相对复杂,目前多用于真菌病毒的检测[13-15]和次生代谢物的研究[16-17]。GUS染色法通过构建病原菌的GUS转化株,以X-Gluc为底物,用组织化学法进行染色,对病原菌进行显微镜观察检测[18-19]。GUS染色法观察效果好,可准确、稳定地检测到病原真菌,但其反应底物X-Gluc价格昂贵,早期检测过程对植物组织有破坏,不能持续检测病原菌后续侵染过程,且不适宜田间检测。荧光检测法是将绿色荧光蛋白(Green fluorescent protein,GFP)基因转移到病原菌中,在病原菌启动子的控制下进行表达,通过检测绿色荧光蛋白水平进行定量,使细胞生长和形成动态可视化,并且可用于细胞的检测和定量[20-23],更适宜用于理论研究。

  • 随着分子生物学和生物信息学的蓬勃发展,核酸分子生物学技术在微生物检测领域的应用成为了国内外研究者的关注焦点,近年来,分子生物学检测技术在植物病原菌的早期检测和病害诊断过程中得到了广泛认可。目前常用的分子生物学检测技术为核酸序列PCR扩增技术以及PCR扩增的衍生技术。

  • 常规PCR是分子生物学检测的重要手段,充分应用在植物病原菌鉴定和检测中。LIU等为了研究引起中国橡胶树炭疽病的病原菌多样性和地理分布特点,从中国4个省份18个试验田中采集感病叶片,分离大量病原菌株,通过PCR扩增病原菌的内部转录间隔区(ITS)、肌动蛋白基因(ACT)、甘油醛-3-磷酸脱氢酶基因(GAPDH)、β−微管蛋白2基因(β-tubulin2)和CAL 5个基因序列,通过多位点系统发育和表型特征分析,将病原菌分为5个种群[3]。PARIKKA等利用常规PCR技术分别对人工和自然感染条件下显症和未显症的草莓组织进行尖孢炭疽菌的早期检测,均获得阳性PCR结果。因此,PCR技术可以用于检测草莓组织中侵染时期或潜伏时期的尖孢炭疽菌,但其需要PCR后产物分析,检测灵敏度有限,特异性也相对较差[24]

  • 序列特异性扩增区(Sequence characterized amplified regions, SCAR)通常由随机扩增多态性DNA(Random amplified polymorphism, RAPD)转化而来,即回收RAPD标记片段并根据此片段设计新的特异性引物——SCAR引物,再用SCAR引物进行PCR获得特异性较强、稳定性较高的SCAR标记[25]。由于SCAR引物比RAPD引物长,且与DNA完全匹配,具有更高的稳定性和可重复性,目前该技术已应用于炭疽菌等植物病原真菌的早期检测[26-27],如NITHYA等针对引起印度甘蔗红腐病的病原菌C. falcatum设计SCAR引物,并用炭疽菌属其他种的DNA评价SCAR引物的特异性,结果仅从C. falcatum中扩增出442 bp的片段,而且在C. falcatum纯培养中检测灵敏度达到0.1 ng DNA,在甘蔗组织中检测灵敏度达到5 ng DNA[28]

  • 巢式PCR技术利用2组不同的引物进行目标序列的扩增,第一对引物扩增产物为第二对引物扩增模板,巢式PCR技术有效提高了检测的准确性和灵敏度[29]。张磊等对梨轮纹病菌(Botryosphaeria berengeriana)、梨炭疽病病原菌(C. gloeosporioides) 进行常规PCR和巢式PCR检测,结果表明,只能从Botryosphaeria berengerianaC. gloeosporioides中扩出317 bp和325 bp的特异性条带,且巢式PCR灵敏度比常规PCR提高约105[30]。CHEN等建立了1种检测大豆种子中炭疽菌(C. lindemuthianum)的巢式PCR检测方法。结果显示,常规的一步式PCR最低能从大豆种子中检测炭疽菌DNA量为10 pg,而巢式PCR检出限低至10 fg DNA,相当于1个C. lindemuthianum的基因组DNA,灵敏度提高了1 000倍[31]。可见巢式PCR是具有高灵敏度的病原菌检测方法,但其操作步骤繁琐,进行第二次PCR扩增引起交叉污染的几率较大,容易出现假阳性结果。

  • 环介导等温扩增(loop-mediated isothermal amplification, LAMP)是1个单步扩增过程,需要4~6个引物,利用strand-displacement Bst DNA聚合酶横向结合到不同的位点,可以在等温条件下进行高特异性的扩增[32]。LAMP能很好地排除干扰,提取方法简单快速,可以避免复杂的DNA提纯程序,可用于植物病原菌的早期诊断和原位检测[33-34]。TIAN等针对大豆炭疽病病原菌C. truncatum Rpbl基因序列,设计并筛选了4对特异性引物,通过LAMP检测大豆种子中的C. truncatum。在LAMP反应产物中加入显色剂SYBR后,只有当C. truncatum存在时反应产物才会出现黄绿色,检出限可达100 pg·μL−1 DNA[35]。KHAN等以Ypt1基因为靶点,分别用常规PCR、巢式PCR、实时荧光定量PCR和LAMP等方法检测马铃薯晚疫病菌Phytophthora infestans。结果表明,LAMP特异性最高,最低可检测浓度为0.128 pg·μL−1 DNA,比常规PCR灵敏1 000倍,比巢式PCR灵敏10倍,比实时荧光定量PCR灵敏100倍。随后KHAN等在番茄早疫病菌Alternaria solani中对上述几种方法进行了评价,结果表明,LAMP灵敏度是常规PCR的10倍,巢式PCR比LAMP灵敏100倍,实时荧光定量PCR比LAMP灵敏1 000倍[36]。因此,LAMP技术简单、快速、特异性强,在病原真菌早期检测中有较大的应用潜力,但其在不同菌种和不同实验条件下灵敏度有较大差异。

  • 实时荧光定量PCR (Real-time quantitative PCR,QPCR)通过探测PCR扩增产物的荧光信号,对扩增进程进行实时检测,根据扩增指数期的循环阈值(Ct)定量DNA。按照发射荧光信号的化学物质不同,分为TaqMan 探针法和 SYBR Green I染色插入法。TaqMan 探针法利用可与目的序列进行杂交的探针来指示扩增产物;由于需要探针识别目的序列,特异性较强,设计探针的难度较大,成本较高。荧光染料SYBR Green I可以与所有双链DNA的小沟结合发射荧光,不识别特异序列,对目的核酸序列要求较低,简单方便、容易操作、成本较低。实时荧光定量PCR可以对各种环境样品(包括宿主组织,土壤,水和空气)中的目标真菌DNA进行准确、可靠和高通量的定量分析,为诊断接种阈值水平,流行病学和宿主-病原体相互作用研究开辟了新方法,为检测和研究植物致病性和拮抗性真菌提供了更多途径。近年来,实时荧光定量PCR技术已应用于不同寄主植物中炭疽菌的定量以及生长动态的监测,解决了炭疽菌半活体营养型侵染带来的检测难题[37-39],成为了构建炭疽菌早期检测技术的首选[37]。DAUCH等利用SYBR Green I 插入染料法建立了C. coccodes 实时荧光定量PCR技术,可最低检出0.25 pg·μL−1 DNA,并利用该技术监测了C. coccodes在寄主苘麻上的侵染动态[6];DEBODE等利用TaqMan 探针法建立了C. acutatum实时荧光定量PCR技术,检出限为0.05 pg·μL−1 DNA,测定了C. acutatum在草莓叶片上侵染过程中的菌体数量[37];CHEN等针对菜豆炭疽病病原菌C. lindemuthianum,通过TaqMan 探针法和SYBR Green I插入染料法建立的实时荧光定量PCR方法,能够特异性检出C. lindemuthianum,并证明了菜豆炭疽病斑面积与菌体数量的相关性[38]

  • QPCR包括相对定量分析和绝对定量分析2种定量分析方法,计算初始模板基因拷贝数用绝对定量分析,比较不同处理间特定基因表达量的变化用相对定量分析。绝对定量方法更多的应用于植物病原真菌的检测,以病原真菌基因组DNA或保守序列的重组质粒为标准品绘制标准曲线,利用特异性引物进行扩增,通过测定样品Ct值即可对病原真菌进行定量。

  • (1)选择目标序列。引物特异性是准确识别和定量目标菌株的关键,ITS、ACT、GAPDH等基因在真菌基因组中保守且种间变异性大,常用于菌种鉴定[40-44]和特异性引物设计[45]。有研究表明,ITS是最有可能成功识别范围最广的真菌的基因,在种间和种内变异最明确,并被提议作为主要的真菌条形码标记物[46]。DEBODE等利用ITS和β-tubulin2基因设计引物分别建立了草莓尖孢炭疽菌的实时PCR检测方法。研究表明,ITS基因特异性引物扩增效率是β-tubulin2基因特异性引物扩增效率的3~4倍,灵敏度前者是后者的66倍[37]。SREENIVASAPRASAD等利用β-tubulin2基因特异性引物成功从发病和未发病的橄榄中检测到尖孢炭疽菌。研究结果表明,基于尖孢炭疽菌和胶孢炭疽菌 β-tubulin2基因特异性引物可用于QPCR检测无症状或感染早期的植物组织中的炭疽菌[47]。(2)验证引物特异性。首先利用NCBI数据库中的BLASTN将设计的特异性引物序列与GenBank NR数据库进行比对。其次用设计好的特异性引物同时扩增多个不同菌株,进一步验证引物特异性[48]。菌株一般是与目标菌株同种、同属不同种、侵染同一植株同一部位和不同部位的或与目标菌株侵染环境相关的病原菌,菌株数量几个到几十、几百个不等[39, 48-49]。(3)优化引物特异性及敏感性。通过结合SCAR标记,或设计巢式引物,可以增加引物特异性和检测灵敏度[29, 36]。SRINIVASAN等利用SYBR作为荧光染料建立了1种基于SCAR标记的QPCR检测方法,用于检测辣椒种子和果实中的C. capsicii。Srinivasan等开发的SCAR引物对C. capsicii具有高度特异性,在7个目标分离株菌的基因组DNA中均扩增出预期的250 bp的片段,在其他3种辣椒致病真菌和4种常见炭疽菌的基因组DNA中没有扩增。检测体系在C. capsicii纯培养中检测灵敏度为1 pg,在辣椒果实中为2.5×104 pg[39]

  • 利用已知起始拷贝数的标准样品绘制标准曲线。扩增过程中荧光强度与PCR产物的数量呈对应关系,只要对荧光信号进行实时监测并得到未知样品的Ct值,即可通过标准曲线计算未知样品的起始拷贝数。(1)标准曲线的绘制方法。标准品可以是重组质粒也可以是gDNA,浓度范围为1 fg·μL−1~100 ng·µL−1[37, 50]。DAUCH对C. coccodes 的gDNA 进行了1/5、1/10、1/20、1/100稀释,通过计算目标gDNA的数量并校正稀释因子,发现1/10稀释对样品定量最优[6]。取5~7个浓度梯度,设置2~3个重复,加入空白对照,进行QPCR,获得标准曲线[36, 51-52]。(2)灵敏度检测。对目标基因序列和分生孢子进行梯度稀释,QPCR能检测到的最低拷贝数和最低孢子数即反应体系的灵敏度。SCARLETT和KELLY建立的黄瓜镰刀菌QPCR检测技术,最低能检测到100拷贝的目的片段和25个分生孢子[37, 50]。YANG等建立的检测大豆炭疽菌的双重QPCR技术最低能检测到1 pg的C. chlorophytiC. glycinesC. incanum gDNA和0.1 pg的C. truncatum gDNA[53]

  • (1)人工接种是研究植物病害的常规方法,被广泛地用于研究病原菌致病性[2, 54-56]、病原菌侵染过程[57]、植物对病原菌的抗性[58]、病害流行及控制措施[59]等。人工接种的方法各不相同,但都要求植物病害发病率高,且尽可能接近自然状态下发病情况。植物病原真菌接种方法主要有喷雾法[52]和针刺法[2, 40]。用于喷雾法的炭疽菌分生孢子悬浮液浓度通常在1~1×106 个·mL−1范围之内[28, 49, 52, 60]。接种和喷施部位要符合目标菌株特性[61-63],如研究侵染草莓叶片的尖孢炭疽菌,叶片喷施孢子后26 ℃和90%湿度培养即可[37]。(2)检测限是衡量检测方法准确性的重要指标,对QPCR在植物组织或复杂DNA环境中的检测灵敏度进行评价是检测体系建立的关键一步。SCARLETT等在1~106 个·μL−1的目标菌株PCR产物中混入1 μL浓度为10 ng·μL−1的环境样品DNA,来检测体系的灵敏度和特异性[50]。DEBODE等用未受感染植物材料对100%受感染植物材料进行系列稀释,获得含0.001%~10%受感染植物材料的样品,对样品进行QPCR检测,建立Ct值与模板浓度对数(0.001%~10%受感染植物材料)之间的线性回归曲线,计算QPCR在受感染植物材料中的检测限[37]。(3)监测病原菌生长动态,即在不同时间检测病原菌生物量的变化。检测时间根据实验目的而定,研究出现症状之前的病原菌生长动态,检测时间早、间隔短。DEBODE等研究草莓叶片中尖孢炭疽菌早期侵染动态,分别在接种后2、4、6、24、32、48、72、96、168和264 h进行检测[37]。研究病害严重程度与病原菌生长动态的关系,检测时间广而分散。DAUCH等研究绒毛草发病程度与其病原菌C. coccodes的生物量的关系,检测时间为0、1、2、5、7和14 d[6]

  • 橡胶树病害作为一种频发性生物灾害,严重制约了橡胶树的经济生产。过去的病害预测方法多数是根据病害侵染知识、多年实地经验及根据大量的观察数据加以归纳统计得出结果,所依据的预报因子主要包含菌量、气象因素,预报量或为发生期,或为发生量,或为定性定量的等级数值,由于其以病原物的特性和所处条件为依据,应用范围受到严格的限制,所建立的模型为经验模型,忽略了各因素在流行过程中不同阶段作用的差异。基于侵染预测的系统模型可很好地补充经验模型的不足,其根据侵染是否已经发生和发生数量或程度,结合未来几天的天气预报,即可提前一两天作出发病趋势预测,较经验模型更准确和具体,更有利于指导当时的药剂防治。这类预测方法早有研究,如马铃薯晚疫病的HYER氏法和WALLIN法[64-65]、苹果黑星病的MILLS预测表都已有几十年的历史[66]

    基于前期种属鉴定[3]、流行病学[5]、化学防治[67]、生物防治[68]和分子生物学研究[69],笔者认为橡胶树炭疽病预测预报模型构建是防治炭疽病大面积发生和流行的有效途径。基于橡胶树炭疽菌设计特异性引物,建立橡胶树炭疽病QPCR早期检测技术,可以快速、灵敏、特异地对症状不明显甚至无症状的橡胶树进行炭疽菌的定量检测和生长动态监测。流行病学研究表明,菌种、菌量、橡胶树品系、物候、气候、立地环境等因素均影响炭疽病的发生和流行,其中菌量和易感病组织是病害发生的基础条件,温度和湿度是病害流行的关键因素[70]。利用QPCR技术结合显微观察检测致病菌种、菌量,收集发病时间、发病程度和环境数据,利用侵染模型建立橡胶树炭疽病预测预报模型(包括菌量、菌种、温度、湿度、立地环境、物候、品系),后将侵染模型与田间气象监测数据进行拟合。基于病原菌分子检测技术的预测预报模型将为橡胶树炭疽病等热带林木重要病害的预测预报奠定良好基础,在其他经济林木重要病害的预测预报中具有广阔的应用前景。

  • 早期常用的植物病原真菌检测技术有结构定量法、ELISA、GUS染色法、GFP荧光检测法等,这些方法具有特异性及可视化等优点,但测量参数易受到植物因素干扰,定量准确性不足。PCR技术的出现为检测技术的发展带来极大动力,尤其基于实时荧光定量PCR的检测技术,克服了以往检测技术特异性差、灵敏度低、易受干扰、操作繁琐等问题,能够快速、灵敏地对病原菌进行定量并监测其生长动态,为植物病原真菌检测提供了重要的技术支持。将QPCR检测技术应用在基于侵染预测的系统模型,可进一步明确发病率、病情指数与菌量、林分因子、气候条件等之间的关系,有利于提高林木病害预测的准确度,以掌握病害暴发的关键时期,提供充足的病害防治时间。因此,QPCR检测技术在经济林木重要病害的预测预报中具有广阔的应用前景。

    致谢:海南省热带农业科学院王立丰研究员在本文写作过程中给予了指导,特此感谢!

Reference (70)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return