-
浮萍(Lemna minor L.)是一种水生生物,共5属37种[1-3],在温热带地区可以常年生长,生长繁殖快,2~7 d可以繁殖1代。由(3~6) mm×(2~4) mm的叶状体和长2~5 cm、直径小于0.5 mm的1条细根组成,叶状体呈绿色,背面有时呈紫色[4]。有些种则仅有叶状体,是世界上最小的单子叶开花植物[5-7]。浮萍科植物具有无性和有性两种生殖方式,在适合生长的环境下,成熟株体以分生新芽孢的方式进行繁殖,繁殖速率为指数增长模式。浮萍在温度低于5 ℃时进入休眠状态,如越冬前在其夹囊或开口内生椭圆形的冬芽,脱离母体沉入水底,第2年当温度回升后重新生长,再浮出水面形成新的植株[8-10]。一般3月下旬至4月底为浮萍生长高峰期,之后其生长速度和生物量趋于稳定[11]。浮萍能够吸收大量的氮磷元素,具有净化污水的作用,也可降解水中重金属等有毒物质[12]。此外,浮萍所含蛋白质、淀粉以及黄酮类物质,能够用于饲料加工、新能源开发和制造药品[13-18]。同时,在农业生产中也可以防止氮素流失提供农田氮素利用率[19-20]。浮萍科植物生长速度快,富含生物蛋白质和淀粉,具有较高的氮磷、有机物和重金属的吸附转移能力。浮萍作为一种新型环境及能源植物,逐渐受到广泛关注,而前人对浮萍在农业生产上尤其是与水稻共生互作方面的研究较少且存在争议。因此,笔者以浮萍植物为论述对象,综述其在多个领域中的研究价值,为更全面地开发浮萍植物提供参考。
HTML
[1] | 许亚良, 张家明. 海南岛浮萍群落的分布及影响群落结构的因素[J]. 热带生物学报, 2015, 6(3): 304 − 309+314. |
[2] | 黄猛, 许亚良, KHAESO K, et al. 水杨酸诱导膨胀浮萍(Lemna gibba SH0204)开花[J]. 植物生理学报, 2015, 51(4): 559 − 565. |
[3] | LES D H, CRAWFORD D J, LANDOLT E, et al. Phylogeny and systematics of Lemnaceae, the duckweed family [J]. Systematic Botany, 2002, 27(2): 221 − 240. |
[4] | 种云霄, 胡洪营, 钱易. 细脉浮萍和紫背浮萍在污水营养条件下的生长特性[J]. 环境科学, 2004(6): 59 − 64. |
[5] | 黄明星, 朱思思, 张秋鸿. 浮萍研究进展[J]. 生物学杂志, 2016, 33(3): 92 − 98. |
[6] | 朱晔荣, 马荣, 刘清岱, 等. 浮萍相关研究的几方面重要进展[J]. 生物学通报, 2010, 45(4): 4 − 6. |
[7] | 薛慧玲, 张云峰, 陈祈磊, 等. 浮萍形态分类鉴定与染色体观察[J]. 北方园艺, 2014(16): 88 − 92. |
[8] | 梁艺怀, 张琨, 张京佶, 等. 青萍生长抑制试验对稀脉浮萍的适用性研究[J]. 生态毒理学报, 2015, 10(1): 305 − 311. |
[9] | 侯文华, 宋关玲, 汪群慧. 浮萍在水体污染治理中的应用[J]. 环境科学研究, 2004(S1): 70 − 73. |
[10] | 蔡树美, 张震, 辛静, 等. 光温条件和pH对浮萍生长及磷吸收的影响[J]. 环境科学与技术, 2011, 34(6): 63 − 66+75. |
[11] | 王桢桢, 潘杨, 翟笑伟. 封闭景观水体的表观污染机制研究[J]. 环境工程, 2015, 33(4): 9 − 13. |
[12] | ALAERTS G J, MAHBUBAR M R, KELDERMA. Performance analysis of a full-scale duckweed-covered sewage lagoon [J]. Water Res, 1996, 30(4): 843 − 852. |
[13] | 张植元, 葛静远, 谷兵, 等. 新型鱼用饲料原料紫背浮萍人工养殖的初步研究[J]. 中国饲料, 2017(9): 35 − 38+43. |
[14] | ZHAO Y, FANG Y, J IN, Y, et al. Pilot-scale comparison of four duckweed strains from different genera for potential application in nutrient recovery from wastewater and valuable biomass production [J]. Plant Biology, 2015, 17: 82 − 90. |
[15] | XU Y L, FANG Y, LI Q, et al. Turion, an innovative duckweed-based starch production system for economical biofuel manufacture [J]. Industrial Crops and Products, 2018, 124: 108 − 114. |
[16] | 樊修和, 吴启南, 蒋征, 等. UPLC-MS/MS法测定不同产地浮萍中9种核苷类成分的量[J]. 中草药, 2015, 46(21): 3253 − 3257. |
[17] | WANG B, PENG L, ZHU L, et al. Protective effect of total flavonoids from Spirodela polyrrhiza (L.) Schleid on human umbilical vein endothelial cell damage induced by hydrogen peroxide [J]. Colloids and Surfaces B: Biointerfaces, 2007, 60(1): 36 − 41. |
[18] | 苏春英, 苏本华, 孙静. HPLC法测定浮萍中芹菜素的含量[J]. 中医药信息, 2013, 30(3): 32 − 34. |
[19] | LI H, LIANG X, LIAN Y, et al. Reduction of ammonia volatilization from urea by a floating duckweed in flooded rice fields [J]. Soil Science Society of America Journal, 2009, 73: 1890 − 1895. |
[20] | YAO Y L, ZHANG M, TIAN Y H, et al. Duckweed (Spirodela polyrhiza) as green manure for increasing yield and reducing nitrogen loss in rice production [J]. Field Crops Research, 2017, 214: 273 − 282. |
[21] | ZHOU L J, CAMPOS Q, CAMPOS L C. Removal of selected emerging PPCP compounds using greater duckweed (Spirodela polyrhiza) based lab-scale free water constructed wetland [J]. Water Res, 2017, 126: 252 − 261. |
[22] | LUO L, HE H J, YANG C P, et al. Nutrient removal and lipid production by Coelastrella sp. in anaerobically and aerobically treated swine wastewater [J]. Bioresource Technology, 2016, 216: 135 − 141. |
[23] | 辛静, 张震, 钱晓晴, 等. 浮萍去除污水处理厂出水中氮磷的比较研究[J]. 环境科学与技术, 2011, 34(11): 100 − 103. |
[24] | 彭剑峰, 宋永会, 袁鹏, 等. 浮萍塘中氮归趋模式模拟分析[J]. 环境科学, 2006(10): 1963 − 1968. |
[25] | PAPADOPOULOS F H, TSIHRINTZIS V A, ZDRAGAS A G. Removal of faecal bacteria from septage by treating it in a full-scale duckweed-covered pond system [J]. Journal of Environmental Management, 2011, 92(12): 3130 − 3135. |
[26] | LU Y F, ZHOU Y R, NAKAI S, et al. Stimulation of nitrogen removal in the rhizosphere of aquatic duckweed by root exudate components [J]. Planta, 2014, 239(3): 591 − 603. |
[27] | 蔡树美, 刘文桃, 张震, 等. 不同品种浮萍磷素吸收动力学特征[J]. 生态与农村环境学报, 2011, 27(2): 48 − 52. |
[28] | 谢朦, 张飞, 章莹颖, 等. 3种浮萍对富营养化水体的修复[J]. 环境工程学报, 2016, 10(5): 2447 − 2453. |
[29] | XIE W Y, HUANG Q, LI G, et al. Cadmium accumulation in the rootless macrophyte Wolffia globosa and its potential for phytoremediation [J]. International Journal of Phytoremediation, 2013, 15(4): 385 − 397. |
[30] | SETH C S, CHATURVEDI P K, Misra V. Toxic effect of arsenate and cadmium alone and in combination on giant duckweed (Spirodela polyrrhiza ) in response to its accumulation [J]. Environmental Toxicology, 2007, 22(6): 539 − 549. |
[31] | OSAMA R, IBRAHIM M G, FUJIIA M, et al. Potentials of duckweed (Lemna gibba) for treatment of 1,4-dioxane containing wastewater using duckweed multi-ponds system [J]. Energy Procedia, 2019, 157: 676 − 682. |
[32] | 唐利萍, 方扬, 靳艳玲, 等. 重金属镉超富集浮萍品种筛选及其对水体中镉的去除效果[J]. 应用与环境生物学报, 2015, 21(5): 830 − 836. |
[33] | 李阳, 成家杨, 钟钰, 等. 2种浮萍干粉对Cd2+的吸附性能[J]. 江苏农业科学, 2017, 45(15): 248 − 254. |
[34] | 郭国强. 颗粒饲料结合浮萍培育大规格草鱼种高产试验[J]. 中国水产, 2006(8): 77 − 79. |
[35] | CRAWFORD K M, WHITNEY K D. Population genetic diversity influences colonization success [J]. Molecular Ecology, 2010, 19(6): 1253 − 1263. |
[36] | 李阳, 成家杨, 钟钰, 等. 浮萍多样性对富营养化水体净化效果的影响[J]. 南方农业学报, 2017, 48(2): 259 − 265. |
[37] | 张亚辉, 龚江, 梁杰锋, 等. 体重和温度对草鱼摄食小浮萍的影响[J]. 水生态学杂志, 2018, 39(1): 56 − 62. |
[38] | 王付民, 张璐, 陈杖榴. 浮萍生物富集洛克沙胂与阿散酸的动力学特性研究[J]. 中山大学学报(自然科学版), 2007(4): 79 − 83. |
[39] | 李新波, 蔡发国, 邓岳松. 浮萍饲用价值研究进展[J]. 饲料研究, 2011(10): 3 − 6. |
[40] | 印万芬. 我国主要浮萍科植物的综合开发利用[J]. 资源节约和综合利用, 1998(2): 46 − 48. |
[41] | 孔春林, 陈宇. 开发浮萍作饲料[J]. 广东饲料, 2006(1): 40 − 41. |
[42] | 王清春, 刘玉升, 方加兴. 饲喂浮萍对黄粉虫生长发育及繁殖的影响[J]. 环境昆虫学报, 2017, 39(3): 667 − 672. |
[43] | CHENG J J, STOMP A M. Growing duckweed to recover nutrients from wastewaters and for production of fuel ethanol and animal feed [J]. Clean-Soil Air Water, 2009, 37(1): 17 − 26. |
[44] | VERMA R, SUTHAR S. Utility of Duckweeds as source of biomass energy: A review [J]. Bioenergy Research, 2015, 8(4): 1589 − 1597. |
[45] | JAMBO S A, ABDULLA R, AZHAR S H M, et al. A review on third generation bioethanol feedstock [J]. Renewable & Sustainable Energy Reviews, 2016, 65: 756 − 769. |
[46] | GE L L, WANG P, MOU H J. Study on saccharification techniques of seaweed wastes for the transformation of ethanol [J]. Renewable Energy, 2011, 36(1): 84 − 89. |
[47] | PANKEY R D, DRAUDT H N, DESROSIER N W. Characterization of the starch of Spirodela polyrrhiza [J]. J Food Sci, 1965, 30(4): 627 − 31. |
[48] | CUI W, XU J, CHENG J J, et al. Starch accumulation in duckweed for bioethanol production [J]. Biol Eng, 2011, 3(4): 187 − 97. |
[49] | 赵昭, 史慧娟, 张楠, 等. 浮萍休眠体形成过程中的淀粉积累[J]. 江苏农业科学, 2018, 46(22): 315 − 318. |
[50] | 姜楠, 任洪艳, 阮文权, 等. 浮萍与剩余污泥厌氧消化产沼气实验[J]. 环境工程学报, 2017, 11(8): 4757 − 4765. |
[51] | 王红, 蒋征, 刘杰, 等. HPLC法同时测定15个产地浮萍中4种黄酮类成分[J]. 中成药, 2016, 38(7): 1569 − 1573. |
[52] | 蒋祥亮, 刘聪燕, 陈彦, 等. 不同产地浮萍中5种黄酮成分量及抗氧化活性的化学模式识别研究[J]. 中草药, 2017, 48(5): 985 − 990. |
[53] | 彭亮, 李知敏. 紫萍提取物对过氧化氢诱导内皮细胞氧化损伤的保护作用研究[J]. 时珍国医国药, 2009, 20(4): 996 − 998. |
[54] | 李静, 王媚, 张晓幸, 等. 浮萍水煎液延缓皮肤衰老的实验研究[J]. 右江民族医学院学报, 2016, 38(5): 521 − 523. |
[55] | 林捷鹏, 薛俊发, 陈绍芬, 等. 浮萍润肤霜的研制[J]. 河南化工, 2011, 28(8): 16 − 19. |
[56] | CHEN M P, SUN F, SHINDO J. China's agricultural nitrogen flows in 2011: Environmental assessment and management scenarios [J]. Resources Conservation and Recycling, 2016, 111: 10 − 27. |
[57] | LIU X J, VITOUSEK P, CHANG Y H, et al. Evidence for a Historic Change Occurring in China [J]. Environmental Science & Technology, 2016, 50(2): 505 − 506. |
[58] | HUNG SW, YU L Q, DU AN, G F, et al. Control of weeds and rice sheath blight disease in paddy fields by rice chaff and duckweeds (lemna spp.) [J]. Plant Prot., 2003, 29: 22 − 26. |
[59] | ZIMMO O R, STEEN N P, GIJZEN H J. Nitrogen mass balance across pilot-scale algae and duckweed-based wastewater stabilisation ponds [J]. Water Res., 2004, 38: 913 − 920. |
[60] | 韦家书. 水稻田浮萍草综合防治技术[J]. 南方农业, 2016, 10(22): 99 − 100. |