Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Name
E-mail
Phone
Title
Content
Verification Code
Turn off MathJax
Article Contents

WANG Xiangbiao, XIA Zhihui, ZHAI Huqu, REN Jie, CAO Bing. Irradiation mutagenesis of rice using a new type of electron accelerator[J]. Journal of Tropical Biology. doi: 10.15886/j.cnki.rdswxb.20250048
Citation: WANG Xiangbiao, XIA Zhihui, ZHAI Huqu, REN Jie, CAO Bing. Irradiation mutagenesis of rice using a new type of electron accelerator[J]. Journal of Tropical Biology. doi: 10.15886/j.cnki.rdswxb.20250048

Irradiation mutagenesis of rice using a new type of electron accelerator

doi: 10.15886/j.cnki.rdswxb.20250048
  • Received Date: 2025-03-17
  • Accepted Date: 2025-04-17
  • Rev Recd Date: 2025-04-12
  • A new type of electron accelerator device in Sanya was utilized for the first time to mutagenize rice germinating seeds with seven radiation groups at doses of 80-200 Gy in a gradient of 20 Gy. Statistical analyses were performed on six agronomic traits, namely, germination potential, germination rate, survival rate, plant height, fruiting rate, and 1,000-grain weight of rice seeds of the M1 generation, and phenotypic mutations were screened and analyzed for the M2 generation. The results showed that all the agronomic indexes of the rice materials of the M1 generation irradiated at different doses tended to decrease significantly different with the increase of irradiation dose, except for the thousand grain weight, which did not change significantly, and the plant height, which was gradually restored to the level of the control group. The rice plants with mutation in disease resistance, early maturity, late maturity, plant height, tiller number, awn length, and hull color were selected from the M2 generation, with the mutation rates in the order of hull color (0.2349%) > plant height (0.2148%) > late maturity (0.1348%) > plant height (0.1348%) > late maturity (0.1348%) > early maturity (0.1074%) > awn length (0.0805%) > number of tillers (0.0537%) > disease resistance (0.0403%). The optimal radiation doses for the rice sprouting seeds were determined to be 140-160 Gy.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article views(10) PDF downloads(0) Cited by()

Proportional views
Related

Irradiation mutagenesis of rice using a new type of electron accelerator

doi: 10.15886/j.cnki.rdswxb.20250048

Abstract: A new type of electron accelerator device in Sanya was utilized for the first time to mutagenize rice germinating seeds with seven radiation groups at doses of 80-200 Gy in a gradient of 20 Gy. Statistical analyses were performed on six agronomic traits, namely, germination potential, germination rate, survival rate, plant height, fruiting rate, and 1,000-grain weight of rice seeds of the M1 generation, and phenotypic mutations were screened and analyzed for the M2 generation. The results showed that all the agronomic indexes of the rice materials of the M1 generation irradiated at different doses tended to decrease significantly different with the increase of irradiation dose, except for the thousand grain weight, which did not change significantly, and the plant height, which was gradually restored to the level of the control group. The rice plants with mutation in disease resistance, early maturity, late maturity, plant height, tiller number, awn length, and hull color were selected from the M2 generation, with the mutation rates in the order of hull color (0.2349%) > plant height (0.2148%) > late maturity (0.1348%) > plant height (0.1348%) > late maturity (0.1348%) > early maturity (0.1074%) > awn length (0.0805%) > number of tillers (0.0537%) > disease resistance (0.0403%). The optimal radiation doses for the rice sprouting seeds were determined to be 140-160 Gy.

WANG Xiangbiao, XIA Zhihui, ZHAI Huqu, REN Jie, CAO Bing. Irradiation mutagenesis of rice using a new type of electron accelerator[J]. Journal of Tropical Biology. doi: 10.15886/j.cnki.rdswxb.20250048
Citation: WANG Xiangbiao, XIA Zhihui, ZHAI Huqu, REN Jie, CAO Bing. Irradiation mutagenesis of rice using a new type of electron accelerator[J]. Journal of Tropical Biology. doi: 10.15886/j.cnki.rdswxb.20250048
  • 水稻(Oryza sativa )是全球重要粮食作物之一。随着社会经济的发展和生活水平的提升,培育高产优质、性状多样化的水稻,已成为亟待解决的全球性议题。加速器辐射育种通过诱导植物DNA链断裂、碱基替换等分子事件[1],引发遗传物质变异,具有突变率高、突变谱广、突变易稳定、育种周期短等优点[2],自我国开展辐射诱变育种技术的研发以来,通过该技术体系已成功创制逾两千份具备优良性状的新型突变种质[3],对提高作物诱变育种的效率及相应关键基因功能的研究具有重要的意义[4]

    我国加速器以重离子加速器为主,专应用于农业诱变育种领域专用电子加速器的稀缺[5]。电子加速器作为现代物理诱变装置,其核心原理基于真空环境中电子在磁场约束与电场加速的协同作用下,形成能量范围在2~10 MeV之间的高能粒子束[6],但是经常因辐照剂量失准,导致材料死亡率异常升高或突变频率不足等问题。2023年8月,三亚电子加速器诱变育种实验室与中核集团原子能院共同建设了国内首台专用于农业诱变育种研究的新型电子加速器装置,采用直线电子加速,实现0~2 MeV能量梯度精准调控,可有效解决上述问题[7]。已有研究表明,萌动种子的辐射敏感性比干种子有显著的提高,辐照萌动种子,既降低辐照剂量,又提高诱变频率,是辐射育种中一种行之有效的技术[8]。目前,利用该装置对水稻进行种质创制的研究处于空白,本研究首次利用该装置对水稻萌动种进行辐射诱变,对M1、M2代水稻主要表型进行统计分析,以期筛选出早熟、抗病能力强等农艺性状优异的水稻种质材料,并探寻最佳的辐射剂量区间,为后续利用电子加速器进行水稻育种提供科学的实验数据支撑。

    • 供试水稻品种为‘海丰21’。

    • 每组设置3次重复,每次选取500粒饱满水稻种子放置于培养皿中,并加入适量清水进行萌动处理,48 h后交由三亚电子加速器诱变育种实验室,以20 Gy为梯度设置80、100、120、140、160、180、200 Gy辐射剂量组,利用直线电子加速器(电子束能量2 MeV,平均功率1 kW,最小分辨剂量5 Gy)进行辐射。需注意应保持种子平铺于培养皿内,避免因交叠导致辐照不均匀,对实验造成误差。辐照结束后立刻种植于96穴盘的育苗盘进行育苗,15 d后将存活率一半及以下的处理组(受辐照影响较明显)移栽至大田。成熟后,按照单株分类收取M1代及对照组的种子。晒干脱粒后实验组每株随机选取50粒饱满健康的种子,分别种于田间,即为M2代,另随机选取500粒未处理的水稻种播于田间作为对照。

    • 第5天统计M1代发芽数并计算发芽势[9];统计第10天发芽种子总数,计算发芽率和相对发芽率[10 - 11];幼苗培养至第15天(三叶期),统计正常生长的幼苗数(叶片展开、根系无褐化),幼苗萎蔫、茎基部腐烂或完全停止生长,判定为死亡,计算存活率;第15天(三叶期),测量幼苗基部到最高叶尖的高度,第60天(抽穗期)测量主茎高度。成熟期排除病虫害或机械损伤导致的空粒,统计每株有效穗的实粒数与总粒数(包括空秕粒),计算结实率。成熟籽粒晒干后,随机选取1000粒饱满籽粒,称重并换算成千粒重。M2代自播种后每隔3天去田间观察水稻的生长情况,以对照组水稻的生长状况为参考,对比并筛选M2代突变体,着重观察水稻分蘖、株高及抽穗期等农艺性状。

    • 使用Microsoft Excel软件(Microsoft Corporation,Redmond,WA,USA)进行数据收集与处理。为了比较不同剂量组间水稻指标的是否具有显著性差异,使用GraphPad Prism软件进行了方差分析单因素方差分析(one-way ANOVA),同时应用了邓肯多重范围检验(Duncan's multiple range test),P值小于0.05被认为具有统计学显著性,最后使用抑制因子模型拟合曲线进行可视化绘图。

    • 对M1水稻材料的主要农艺性状进行了调查统计,其中,低剂量区间(80~120 Gy)存活率从77.58%降至61.34%,每增加20 Gy剂量,存活率平均下降约8.12%。中剂量区间(120~160 Gy)存活率从61.34%逐步至44.71%,每增加20 Gy剂量,存活率下降幅度扩大至约8.315%。其中,140 Gy组存活率56.29%,160 Gy组44.71%,降幅达11.58%,高于相邻剂量组(如120~140 Gy,5.05%)的降幅。高剂量区间(160~180 Gy)存活率从44.71%骤降至21.37%,剂量达到200 Gy时,存活率归零(表1)。发芽势、相对发芽率与存活率类似,与辐射剂量间的关系呈现相近的下降趋势。幼苗株高在不同剂量下呈现负相关Y =−0.042 98X+12.04,其中,R2=0.95,X为辐射剂量,Y为幼苗株高,与对照组相比均具有显著性差异。

      剂量/Gy
      Dose/Gy
      发芽势/%
      Germination potential/%
      发芽率/%
      Germination rate/%
      相对发芽率/%
      Relative germination rate/%
      存活率/%
      Survival rate/%
      幼苗株高/cm
      Seedling height/cm
      0 86.60±1.58 a 96.00±0.73 a 100.00±0 a 100±0 a 11.38±1.27 a
      80 67.00±2.03 b 91.20±1.32 a 95.00±2.57 a 77.58±1.94 b 9.53±1.65 b
      100 53.80±2.26 c 86.60±1.44 b 90.20±1.98 b 71.36±2.01 b 8.18±1.61 c
      120 47.40±3.50 c 65.20±2.62 c 67.91±3.43 c 61.34±2.22 c 6.72±2.21 d
      140 39.20±2.73 d 50.80±1.73 d 52.91±2.15 d 56.29±2.65 c 6.35±1.93 d
      160 34.00±2.93 d 41.60±2.09 e 43.33±2.37 e 44.71±2.36 d 4.66±1.89 e
      180 11.40±1.59 e 29.00±2.14 f 30.20±2.26 f 21.37±2.26 e 3.97±1.37 f
      200 2.20±0.58 f 3.80±0.76 g 3.95±0.81 g 0±0 f 0±0 g
        注:数据以均值±标准差表示,不同字母表示差异显著(P<0.05),下同。
        Note: The data are expressed as mean ± standard deviation, and different letters indicate significant differences(P<0.05), similarly hereinafter.

      Table 1.  Effects of different irradiation doses on the rice plants at the seedling stage

      表2可知,140~180 Gy剂量下,抽穗期株高在72~76 cm 之间,千粒重在21~23 g之间,均无显著性差异,而结实率则从56.81%降至25.54%,差异显著(P<0.05)。

      剂量/Gy
      Dose
      抽穗期株高/cm
      Plant height at
      tasseling stage
      结实率/%
      Fruiting rate
      千粒重/g
      Thousand kernel
      weight
      0 74.86±1.51 a 100±0 a 22.70±1.16 a
      140 73.95±1.57 a 56.81±2.47 b 22.68±1.38 a
      160 75.21±2.56 a 36.93±2.55 c 22.39±1.21 a
      180 72.64±2.66 a 25.54±2.39 d 21.58±1.31 a

      Table 2.  Statistics of agronomic traits in M1 generation of rice of the 140, 160, and 180 Gy treatment groups after transplanted to field

    • 调查发现,M2代水稻中产生了多种较易观察的突变性状,包括株高变高,分蘖数变少,水稻壳呈现淡淡的紫红色,芒的长度变长,以及水稻抽穗早熟和晚熟。对照组株高在均在81~85 cm,处理组出现了35株株高140~150 cm的水稻,这些水稻变高主要表现在顶端第1第2节的变长,且生长至成熟期易折断;对照组水稻分蘖数为8~16个,处理组发现了8株水稻分蘖数为1~5个(图1);对照组芒为短芒甚至无芒,而处理组中发现12株水稻芒长度变为中等(1~2 cm)甚至更长(>2 cm);对照组水稻种壳颜色在灌浆期呈现绿色,成熟期为淡黄色,处理组则出现35株水稻部分种壳颜色在灌浆期为紫红色,成熟期逐渐变淡。

      Figure 1.  Rice Mutants

      值得注意的是,试验田因暴雨导致水淹,水稻遭受白叶枯病菌侵染,对比后发现,有6株水稻对白叶枯抗性特别高,几乎不受影响,15 d后测量其病斑长度<3 cm,病斑极少,仅边缘轻微黄化(图1),而对照组以及处理组处理组的其他水稻株,病斑较明显,叶片部分枯黄,甚至有2个株系全叶枯死,植株严重矮化或死亡。

      基于剂量−突变率关联分析,各辐照剂量对水稻诱变的影响排序为:160 Gy(1.3823%)>180 Gy(1.2857%)>140 Gy(0.5851%)(表3)。为获得更多的突变体,以半致死剂量(LD50)为基准[12],平衡突变率−存活率,确定140-160 Gy为最佳辐射剂量区间。

      剂量/Gy
      Dose/Gy
      种植数/株
      Number of plants
      突变数量/株
      Number of mutations
      突变率/%
      Mutation rate/%
      0 500 0 0
      140 9 400 55 0.585 1
      160 3 400 47 1.382 3
      180 2 100 27 0.777 8
      总株数
      Total number
      14 900 129 0.865 8

      Table 3.  Number of mutations and mutation rate in the M2 generation of rice under different irradiation doses

      表4可知,不同辐射剂量下各农艺性状的敏感程度不同,例如在140 Gy实验组中,突变数量最多的农艺性状为种壳颜色(17株);在160 Gy实验组中,突变数量最多的农艺性状为株高(15株);在180 Gy实验组中,突变数量最多的农艺性状为晚熟(8株)。

      剂量/ Gy
      Dose
      分蘖数/株
      Number of tillers
      株高/株
      Plant height
      芒长/株
      Awn length
      种壳颜色/株
      Hull color
      早熟/株
      Early maturity
      晚熟/株
      Late maturity
      抗病/株
      Disease resistance
      140 4 12 6 17 7 5 4
      160 3 15 2 12 6 7 2
      180 1 5 4 6 3 8 0
      总突变数
      Total number of mutations
      8 35 12 35 16 20 6

      Table 4.  Number of mutations in agronomic traits under different irradiation doses

      同一农艺性状对不同辐射剂量的响应程度有所差异,其排序情况如下:分蘖数突变160 Gy(0.0882%)>180 Gy(0.0476%)>140 Gy(0.0426%);株高突变160 Gy(0.4412%)>180 Gy(0.2381%)>140 Gy(0.1277%);芒长突变180 Gy(0.1905%)>140 Gy(0.0638%)>160 Gy(0.0588%);种壳颜色突变160 Gy(0.3529%)>180 Gy(0.2857%)>140 Gy(0.1809%);早熟突变160 Gy(0.1765%)>180 Gy(0.1429%)>140 Gy(0.0744%);晚熟突变180 Gy(0.3810%)>160 Gy(0.2059%)>140 Gy(0.0532%);抗病突变160 Gy(0.0588%)>140 Gy(0.0425%)>180 Gy(0%)。基于总突变率分析,M2代农艺性状对辐射的敏感程度依次为种壳颜色(0.2349%)>株高(0.2148%)>晚熟(0.1342%)>早熟(0.1074%)>芒长(0.0805%)>分蘖数(0.0537%)>抗病(0.0403%)(表5)。

      剂量/ Gy
      Dose
      分蘖数/株
      Number of tillers
      株高/株
      Plant height
      芒长/株
      Awn length
      种壳颜色/株
      Hull color
      早熟/株
      Early maturity
      晚熟/株
      Late maturity
      抗病/株
      Disease resistance
      140 0.042 6 0.127 7 0.063 8 0.180 9 0.074 4 0.053 2 0.042 5
      160 0.088 2 0.441 2 0.058 8 0.352 9 0.176 5 0.205 9 0.058 8
      180 0.047 6 0.238 1 0.190 5 0.285 7 0.142 9 0.381 0 0
      总突变率/%
      Total mutation rate/%
      0.053 7 0.214 8 0.080 5 0.234 9 0.107 4 0.134 2 0.040 3

      Table 5.  Mutation Rate of Agronomic Traits under Different Irradiation Doses

    • 种子在受到辐射后,生长发育情况很快受到明显的影响,发芽势、发芽率、相对发芽率、存活率、幼苗株高以及结实率随着剂量的增加而不断降低,且差异显著,说明辐射且对这些农艺性状有抑制作用[13]。而到了抽穗期水稻株高已经恢复至对照水平。这表明M1代绝大多数幼苗株高生长被抑制的原因,仅是辐射导致的物理损伤,在水稻自身的修复机制下逐渐恢复至对照水平,不会遗传至下一代。而且M1代容易产生隐形突变,不易被发现,本次实验M2代水稻相关突变性状如分蘖数、芒长、种壳颜色等突变表型在M1代中并未发现,在M2代中分离显现[14]

      140 Gy组:种壳颜色突变率最高(0.180 9%),其次是株高(0.127 7%),分蘖数突变率最低(0.042 6%),说明140 Gy剂量对种壳颜色和株高具有较高诱变效率,分蘖性状对辐射响应较弱。160 Gy组:株高突变率显著最高(0.441 2%),种壳颜色次之(0.352 9%),表明该剂量对株型和种壳颜色效诱变能力较高,抗病突变率(0.058 8%)为3组最高,适合抗性筛选。180 Gy组:晚熟突变率最高(0.381 0%),芒长突变率提升(0.190 5%),株高突变率(0.238 1%)较高,但抗病突变率为0,表明高剂量可能不利于抗性相关通路,且伴随高致死风险,因此,140~160 Gy 剂量区间平衡了突变效率与植株存活率,适用于规模化诱变育种。性状突变率排序从高到低依次为:种壳颜色(0.234 9%)>株高(0.214 8%)>晚熟(0.134 2%)>早熟(0.107 4%)>芒长(0.080 5%)>分蘖数(0.053 7%)>抗病(0.040 3%),种壳颜色突变率高可能与其由单基因调控有关,而抗病性可能受多基因互作影响,故突变率较低。

      本试验对不同剂量辐照后的水稻主要农艺性状进行了统计分析,并筛选了抗病、早熟等水稻优良性状的突变体。结果表明,不同剂量下水稻发芽势、发芽率、存活率、幼苗株高、结实率均随剂量的增加而下降;半致死剂量在140~160 Gy之间,为最佳辐射诱变的剂量区间,能获得较多的突变体(55株和47株),且M1代容易产生隐形突变,建议在M2代及之后选种。获得的抗病、早熟、分蘖、株高等突变体,将作为相应关键基因功能的研究原材料,为研究提供便利,也为后续利用新型电子加速器提高创制水稻种质资源效率提供科学实验数据支撑。

Reference (14)
WeChat followshare

Top

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return