[1]
|
STARNES C O. Coley’s toxins[J]. Nature, 1992, 360:23. |
[2]
|
陈欧亮,张红,赵鑫铖,等.细菌外膜囊泡的抗肿瘤机制及其应用研究进展[J].动物医学进展, 2022, 43(9):85-89. |
[3]
|
ZHANG H, DIAO H, JIA L, et al. Proteus mirabilis inhibits cancer growth and pulmonary metastasis in a mouse breast cancer model[J]. PLoS One, 2017, 12(12):e0188960. |
[4]
|
ZHANG H, SANG S, XU H, et al. Lovastatin suppresses bacterial therapy-induced neutrophil recruitment to the tumor by promoting neutrophil apoptosis[J]. Journal of Functional Foods, 2021, 86:104693. |
[5]
|
隋阳,赵治宇,吴长君.肿瘤相关巨噬细胞在三阴性乳腺癌中的研究进展[J].中国免疫学杂志, 2023, 39(2):444-448. |
[6]
|
王玉玮,杨长青,魏子白,等.肿瘤相关巨噬细胞与胃癌的研究进展[J].临床医药实践, 2023, 32(2):121-124. |
[7]
|
卢昕雅,孔令慧.肿瘤免疫微环境中的免疫细胞与肺癌关系的研究进展[J].癌症进展, 2023, 21(7):703-706. |
[8]
|
|
[9]
|
叶润发,王淳,韩东河,等.小胶质细胞和巨噬细胞极化与多发性硬化症的研究进展[J].医学研究生学报,2021, 34(7):761-764. |
[10]
|
王硕,彭欢,田锐.免疫调节在急性心肌梗死后炎症导致心肌重构的治疗进展[J].心肺血管病杂志, 2022,41(9):1018-1022. |
[11]
|
罗维,景涛,戴剑松.代谢性疾病中巨噬细胞极化的机制及运动对其调控作用的研究进展[J].中国免疫学杂志, 2023, 39(2):421-426. |
[12]
|
邢薿文,谢言,覃尧.脂多糖刺激的鸡巨噬细胞源外体对文昌鸡树突状细胞的活化作用[J].热带生物学报,2023, 14(4):433-440. |
[13]
|
GUERRERO-MANDUJANO A, HERNÁNDEZ-CORTEZ C, IBARRA J A, et al. The outer membrane vesicles:secretion system type zero[J]. Traffic, 2017, 18(7):425-432. |
[14]
|
SARTORIO M G, PARDUE E J, FELDMAN M F, et al.Bacterial outer membrane vesicles:from discovery to applications[J]. Annual Review of Microbiology, 2021,75:609-630. |
[15]
|
姚崧源,孙述学.细菌外膜囊泡在疫苗领域的研究进展[J].微生物学免疫学进展, 2021, 49(1):78-82. |
[16]
|
杨霞,宁宗.巨噬细胞极化调控信号通路及M1/M2失衡在肺部炎症性疾病中作用的研究进展[J].山东医药, 2023, 63(26):88-91. |
[17]
|
CHEN Q, BAI H, WU W, et al. Bioengineering bacterial vesicle-coated polymeric nanomedicine for enhanced cancer immunotherapy and metastasis prevention[J].Nano Letters, 2020, 20(1):11-21. |
[18]
|
LI M, ZHOU H, YANG C, et al. Bacterial outer membrane vesicles as a platform for biomedical applications:an update[J]. Journal of Controlled Release:Official Journal of the Controlled Release Society, 2020, 323:253-268. |
[19]
|
ANDERSON C F, MOSSER D M. A novel phenotype for an activated macrophage:the type 2 activated macrophage[J].Journal of Leukocyte Biology, 2002, 72(1):101-106. |
[20]
|
WANG L X, ZHANG S X, WU H J, et al. M2b macrophage polarization and its roles in diseases[J]. Journal of Leukocyte Biology, 2019, 106(2):345-358. |
[21]
|
ZHANG Q, SIOUD M. Tumor-associated macrophage subsets:shaping polarization and targeting[J]. International Journal of Molecular Sciences, 2023, 24(8):7493. |
[22]
|
ITO I, ASAI A, SUZUKI S, et al. M2b macrophage polarization accompanied with reduction of long noncoding RNA GAS5[J]. Biochemical and Biophysical Research Communications, 2017, 493(1):170-175. |
[23]
|
ASAI A, TSUCHIMOTO Y, OHAMA H, et al. Host antitumor resistance improved by the macrophage polarization in a chimera model of patients with HCC[J]. Oncoimmunology, 2017, 6(4):e1299301. |
[24]
|
丁祝进,崔虎军,谷昭天,等.鱼类巨噬细胞标记物的研究进展[J].水产科学, 2023, 42(3):517-526. |
[25]
|
BOSCO M C. Macrophage polarization:reaching across the aisle?[J]. The Journal of Allergy and Clinical Immunology, 2019, 143(4):1348-1350. |
[26]
|
CHENG K, ZHAO R, LI Y, et al. Bioengineered bacteriaderived outer membrane vesicles as a versatile antigen display platform for tumor vaccination via Plug-andDisplay technology[J]. Nature Communications, 2021,12(1):2041. |
[27]
|
SCHETTERS S T T, JONG W S P, HORREVORTS S K,et al. Outer membrane vesicles engineered to express membrane-bound antigen program dendritic cells for cross-presentation to CD8+T cells[J]. Acta Biomaterialia,2019, 91:248-257. |