-
白木香(Aquilaria sinensis)为瑞香科(Thymelaeceae)沉香属(Aquilaria Lam)植物,是我国特有的产沉香植物和药用沉香的法定基原植物[1-4],主要分布于我国的广东、海南、广西 和云南等地[3]。近年来,随着野生白木香生境的片段化和人为掠夺式开采导致白木香野生资源处于濒危状态[5]。尽管现在白木香的人工栽培规模逐年增加,但白木香漫长的结香周期和复杂的结香过程,导致沉香质量和产量仍远远不能满足沉香市场的需求[6]。白木香人工栽培植株的生长和结香的周期长达5~8 a,甚至更长,科学的栽培技术对于促进白木香人工林的生长、结香具有重要意义。营养元素代谢作为白木香植株生长、发育、沉香形成的物质基础是高效栽培技术集成不可缺少的理论基础与科学依据。近年来,国内外对于白木香营养元素代谢的研究多集中于白木香生长特定时期(如幼苗期等)的营养管理对其生理生长的影响等方面[7-13],对在成龄树结香过程中受到强烈人为或者自然因素干预、胁迫阶段的营养代谢方面的研究较少,为此成龄树结香阶段白木香植株营养代谢规律理论有待丰富。白木香结香过程是植株在自然或者人为因素影响下进行防御性次生产物代谢、积累、转化的过程[14],该过程中是否伴随着营养元素代谢规律的改变,以及结香与营养是否存在协同过程有待研究。研究结果表明,沉香的形成过程伴随着淀粉的转化[15],但该过程中营养元素的代谢是否与光合产物的积累、代谢、转化存在关联亦需要进一步明确。笔者拟通过分析在白木香结香初期阶段伴随着沉香的形成白木香植株的营养元素、叶片叶绿素含量等指标的变化,开展白木香结香初期营养元素与结香协同变化规律的研究。成龄树结香阶段营养元素代谢规律的研究对于丰富白木香结香理论内容,指导通过营养代谢途径调控沉香的生产具有现实意义。
HTML
-
试验材料为中国热带农业科学院文昌试验基地4年生的热科2号白木香植株。试验地位于海南省文昌市迈号镇(E 110°45′36.19″,N19°32′17.11″),土壤类型为冲积土,质地为沙壤土,土壤养分状况整体偏中下(表1)。
土壤养分 含量/(mg·kg−1) 分级等级 全 氮 297.73±17.32 6 碱解氮 51.33±1.76 5 全 磷 592.50±198.55 4 有效磷 36.05±6.96 2 全 钾 1375.62±78.5 6 速效钾 31.24±1.14 5 交换钙 279.25±10.44 5 交换镁 39.21±2.21 4 有效铜 0.72±0.14 3 有效铁 17.87±3.45 2 有效锌 1.49±0.29 2 有效锰 11.64±1.94 3 注:根据全国第二次土壤普查养分分级标准,全氮、全磷、全钾1,2,3,4,5,6分别代表很高,高,中上,中下,低,很低水平;碱解氮、有效磷、速效钾1,2,3,4,5,6分别代表极高,很高,高,中,低,很低水平;钙、镁、铜、锌、铁、锰1,2,3,4,5分别代表很高,高,中,低,很低水平。
Note: According to the nutrient classification standard of the second national soil survey, total nitrogen, total phosphorus and total potassium 1, 2, 3, 4, 5, 6 represent very high, high, upper middle, lower middle, low, and very low levels, respectively. Available nitrogen, available phosphorus, available potassium 1, 2, 3, 4, 5, 6 represent extremely high, very high, high, medium, low, and very low levels, respectively. Calcium, magnesium, copper, zinc, iron, manganese, 1, 2, 3, 4, 5 represent very high, high, medium, low, and very low levels, respectively.Table 1. Soil nutrient regime at the experiment site
-
选取长势具有代表性的植株20株,采用人工打洞法在植株树干部位间隔5 cm左右的距离打洞(直径为0.5 cm)并贯穿树干。打洞处理2个月后,在开始出现结香迹象的植株上分别在叶片、结香部位树皮及木质部上进行取样,3次重复;以同地同时期种植且未进行打洞结香处理的热科2号植株为对照,对照的取样方法与处理植株相同。采用“S”型混合取样法,采集试验地块土层深度0~30 cm土壤样品进行营养状况分析。
-
土壤指标测定方法:土壤全氮采用半微量开式法测定;土壤碱解氮采用碱解扩散法测定;土壤全磷采用高氯酸氧化,钼锑抗比色法测定;土壤有效磷采用氟化铵浸提,钼锑抗比色法测定;土壤全钾采用NaoH熔融,火焰光度计法测定;土壤速效钾采用NH4OAc浸提,火焰光度计法测定;土壤中微量元素采用原子吸收分光光度法(AAS法)测定[16]。每指标均重复3次,取其平均值。
叶片叶绿素含量测定方法:采用乙醇浸提法[17]测定叶片叶绿素含量。具体方法:称取0.5 g新鲜叶片剪碎于20 mL 95%乙醇中,在室温下浸提至叶片绿色褪去,将提取液过滤到50 mL容量瓶定容,以95%乙醇作为空白对照,分别在663、645 nm波长下测定吸光度,并分别计算叶片叶绿素a、叶绿素b含量,两者之和为叶片叶绿素含量。重复3次,取其平均值为测定值。
植物样品测定方法:植物的全氮测定采用H2SO4-H2O2消煮,奈氏比色法测定;植物的全磷测定采用H2SO4-H2O2消煮,钼锑抗比色法测定;植物的全钾测定采用马弗炉灰化,火焰光度计法;植物的中、微量元素测定采用马弗炉灰化,原子吸收分光光度法测定[16]。每指标均重复3次。
-
采用Microsoft Excel完成试验数据的整理、计算和作图。采用SAS9.0进行数据处理与统计分析,相同指标进行T测验比较,以不同大写字母表示极显著差异(P<0.01),不同小写字母表示显著差异(P<0.05)。