Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Name
E-mail
Phone
Title
Content
Verification Code
Volume 12 Issue 3
Sep.  2021
Turn off MathJax
Article Contents

CHENG Zian, MEI Wenli, CHEN Huiqin, WANG Hao, Gai Cuijuan, HU Jiameng, LIU Shoubai, DAI Haofu. Chemical Constituents from the Twigs and Leaves of Croton Laevigatus, a Li Folk Medicine[J]. Journal of Tropical Biology, 2021, 12(3): 319-325. doi: 10.15886/j.cnki.rdswxb.2021.03.007
Citation: CHENG Zian, MEI Wenli, CHEN Huiqin, WANG Hao, Gai Cuijuan, HU Jiameng, LIU Shoubai, DAI Haofu. Chemical Constituents from the Twigs and Leaves of Croton Laevigatus, a Li Folk Medicine[J]. Journal of Tropical Biology, 2021, 12(3): 319-325. doi: 10.15886/j.cnki.rdswxb.2021.03.007

Chemical Constituents from the Twigs and Leaves of Croton Laevigatus, a Li Folk Medicine

doi: 10.15886/j.cnki.rdswxb.2021.03.007
  • Received Date: 2021-01-15
  • Rev Recd Date: 2021-04-06
  • Available Online: 2021-09-06
  • Publish Date: 2021-10-11
  • The twigs and leaves of Croton laevigatus, a Li Folk Medicine, were extracted with ethanol, from which compounds were separated and purified by using column chromatography on silica gel, sephadex LH-20 and semi-preparative HPLC, and their structures were identified on the basis of spectroscopic data and physicochemical properties. Twelve compounds were separated from the 95% ethanol extract of the twigs and leaves of C. laevigatus, including (3S, 5R, 6S, 7E, 9R)-3,6-dihydroxy-5,6-dihydro-β-ionol (1), vomifoliol (2), 4,5-dihydroblumenol A (3), 5-epi-eudesma-4(15)-ene-1β, 6β-diol (4), aromadendrane-4β, 10β-diol (5), ent-4(15)-eudesmene-1β, 6α-diol (6), (7R*)-opposit-4(15)-ene-1β, 7-diol (7), (+)−syringaresinol (8), rel-(3R, 3′S, 4R, 4′S)-3,3′,4,4′-tetrahydro-6, 6′-dimethoxy[3,3′-bi-2H-benzopyran]-4,4′-diol (9), (+)−medioresinol (10), thero-ficusesquilignan A (11), trans-p-hydroxycinnamic acid methyl ester (12). Compounds 1−12 were obtained from C. laevigatus for the first time. The bioassay of the compounds 1−12 was conducted with Behrman and MTT methods. The bioassay showed that the compounds 8−12 had significant nematicidal activity against Panagrellus redivivus, and that all the compounds were inactive against the selected human cancer cell lines.
  • [1] 邱华兴. 中国植物志[M]. 北京: 科学出版社, 1996, 44(2): 136 − 137.
    [2] 江苏新医学院. 中药大辞典[M]. 上海: 科学技术出版社, 1975, 881 − 882.
    [3] ZOU G A, DING G, SU Z, et al. Lactonecembranoids from Croton laevigatus [J]. J. Nat Prod., 2010, 73(4): 792 − 795. doi:  10.1021/np100044t
    [4] HUANG H, QI F, YUAN J, et al. Labdane-type diterpenoids from Croton laevigatus [J]. RSC Adv., 2014, 4(74): 39530 − 39540. doi:  10.1039/C4RA04863F
    [5] LIU M, ZHANG M, LI J, et al. Six new diterpenoids from Croton laevigatus [J]. J. Asian Nat Prod Res., 2018, 20(10): 909 − 919. doi:  10.1080/10286020.2018.1484455
    [6] ZHANG J, TANG Y, HUANG J, et al. Bioactive diterpenoids from Croton laevigatus [J]. Phytochemistry, 2017, 144: 151 − 158. doi:  10.1016/j.phytochem.2017.09.003
    [7] ZOU G A, ZHANG H, AISA H A, et al. Laevigatbenzoate from Croton laevigatus Vahl [J]. J. Nat Med., 2011, 65(2): 391 − 394. doi:  10.1007/s11418-010-0503-9
    [8] WANG G, ZHANG H, LIU H, et al. Laevinoids A and B: two diterpenoids with an unprecedented backbone from Croton laevigatus [J]. Org Lett, 2013, 15(18): 4880 − 4883. doi:  10.1021/ol402318m
    [9] 马青云, 黄圣卓, 李红芳, 等. 杠板归中化学成分生防活性研究[J]. 湖北农业科学, 2013, 52(21): 5245 − 5247. doi:  10.3969/j.issn.0439-8114.2013.21.035
    [10] ELLMAN G L, COURTNEY K D, ANDRES V, et al. A new and rapid colorimetric determination of acetylcholinesterase activity [J]. Biochem Pharmacol, 1961, 7(2): 88 − 95. doi:  10.1016/0006-2952(61)90145-9
    [11] 梅文莉, 戴好富, 吴大刚, 等. 肥牛木枝条化学成分的分离与鉴定[J]. 中国药物化学杂志, 2006, 16(4): 240 − 243. doi:  10.3969/j.issn.1005-0108.2006.04.012
    [12] 徐有伟, 周洪雷, 任冬梅, 等. 潺槁木姜子地上部位化学成分[J]. 山东大学学报(医学版), 2016, 54(3): 45 − 49.
    [13] AREERST S, ING O M, Anake K, et al. Constituents of Polyalthia jucunda and their cytotoxic effect on human cancer cell lines [J]. Pharm Biol., 2007, 45(7): 575 − 579. doi:  10.1080/13880200701501300
    [14] SUN Z H, CHEN B, ZHANG S, et al. Four new eudesmanes from Caragana intermedia and their biological activities [J]. J. Nat Prod., 2004, 67(12): 1975 − 1979. doi:  10.1021/np049866z
    [15] WU T S, CHAN Y Y, LEU Y L, et al. The constituents of the root and stem of Aristolochia heterophylla Hemsl [J]. Chem Pharm Bull, 2000, 48(3): 357 − 361. doi:  10.1248/cpb.48.357
    [16] NAGASHIMA F, KISHI K, HAMADA Y, et al. Ent-verticillane-type diterpenoids from the Japanese liverwort Jackiella javanica [J]. Phytochemistry, 2005, 66(14): 1662 − 1670. doi:  10.1016/j.phytochem.2005.05.012
    [17] IIJIMA T, YAOITA Y, KIKUCHU M, et al. Five new sesquiterpenoids and a new diterpenoid from Erigeron annuus (L.) PERS. Erigeron philadelphicus L. and Erigeron sumatrensis RETZ [J]. Chem Pharm Bull, 2003, 51(5): 545 − 549. doi:  10.1248/cpb.51.545
    [18] 程永现, 周俊, 丁中涛, 等. 粗梗木莲的酚性成分[J]. 云南植物研究, 2000, 22(3): 365 − 367. doi:  10.3969/j.issn.2095-0845.2000.03.021
    [19] YANF G Z, YIN X Q, LI Y C, et al. Chemical constituents of Tripterygium wilfordii [J]. Helv Chim Acta, 2000, 83: 3344 − 3350. doi:  10.1002/1522-2675(20001220)83:12<3344::AID-HLCA3344>3.0.CO;2-B
    [20] 于凯, 宋洋, 路阳, 等. 无梗五加根中苯丙素类化合物的研究[J]. 天然产物研究与开发, 2012, 24(4): 469 − 472. doi:  10.3969/j.issn.1001-6880.2012.04.010
    [21] 李薇, 梅文莉, 王昊, 等. 白木香树干的化学成分研究[J]. 中国中药杂志, 2013, 38(17): 2826 − 2831.
    [22] 李奕星, 左文健, 王辉, 等. 异叶三宝木枝条的化学成分研究[J]. 中国药物化学杂志, 2012, 22(2): 120 − 123.
    [23] 邝彤东, 陈惠琴, 李薇, 等. 人工打洞沉香中1个新的倍半萜[J]. 中国中药杂志, 2017, 42(23): 4618 − 4623.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(1)  / Tables(1)

Article views(605) PDF downloads(28) Cited by()

Proportional views
Related

Chemical Constituents from the Twigs and Leaves of Croton Laevigatus, a Li Folk Medicine

doi: 10.15886/j.cnki.rdswxb.2021.03.007

Abstract: The twigs and leaves of Croton laevigatus, a Li Folk Medicine, were extracted with ethanol, from which compounds were separated and purified by using column chromatography on silica gel, sephadex LH-20 and semi-preparative HPLC, and their structures were identified on the basis of spectroscopic data and physicochemical properties. Twelve compounds were separated from the 95% ethanol extract of the twigs and leaves of C. laevigatus, including (3S, 5R, 6S, 7E, 9R)-3,6-dihydroxy-5,6-dihydro-β-ionol (1), vomifoliol (2), 4,5-dihydroblumenol A (3), 5-epi-eudesma-4(15)-ene-1β, 6β-diol (4), aromadendrane-4β, 10β-diol (5), ent-4(15)-eudesmene-1β, 6α-diol (6), (7R*)-opposit-4(15)-ene-1β, 7-diol (7), (+)−syringaresinol (8), rel-(3R, 3′S, 4R, 4′S)-3,3′,4,4′-tetrahydro-6, 6′-dimethoxy[3,3′-bi-2H-benzopyran]-4,4′-diol (9), (+)−medioresinol (10), thero-ficusesquilignan A (11), trans-p-hydroxycinnamic acid methyl ester (12). Compounds 1−12 were obtained from C. laevigatus for the first time. The bioassay of the compounds 1−12 was conducted with Behrman and MTT methods. The bioassay showed that the compounds 8−12 had significant nematicidal activity against Panagrellus redivivus, and that all the compounds were inactive against the selected human cancer cell lines.

CHENG Zian, MEI Wenli, CHEN Huiqin, WANG Hao, Gai Cuijuan, HU Jiameng, LIU Shoubai, DAI Haofu. Chemical Constituents from the Twigs and Leaves of Croton Laevigatus, a Li Folk Medicine[J]. Journal of Tropical Biology, 2021, 12(3): 319-325. doi: 10.15886/j.cnki.rdswxb.2021.03.007
Citation: CHENG Zian, MEI Wenli, CHEN Huiqin, WANG Hao, Gai Cuijuan, HU Jiameng, LIU Shoubai, DAI Haofu. Chemical Constituents from the Twigs and Leaves of Croton Laevigatus, a Li Folk Medicine[J]. Journal of Tropical Biology, 2021, 12(3): 319-325. doi: 10.15886/j.cnki.rdswxb.2021.03.007
  • 光叶巴豆(Croton laevigatus Vahl)为大戟科(Euphorbiaceae)巴豆属(Croton)植物,广泛分布于我国的广东、海南、云南等地[1],全年均可采摘,其根、叶可入药,在中医学中光叶巴豆是治疗胃痛、疟疾、骨折的传统药物[2]。现代植物化学研究表明,光叶巴豆的特征化合物为二萜类化合物,主要包括西松烷型二萜[3]、半日花烷型二萜[4-5]、克罗烷型二萜[6-7]、laevinane型二萜[6, 8]等,其中,西松烷型内酯类二萜laevigatlactones B和克罗烷型二萜laevigatbenzoate对HeLa细胞具有细胞毒活性,其IC50值分别为38.4 µmol·L−1[3]和45.4 µmol·L−1[7];克罗烷型二萜furocrotinsulolide A和3,4,15,16-diepoxy-cleroda-13, 14-diene-12,17-olide对LPS诱导RAW 264.7小鼠巨噬细胞产生NO具有抑制作用,其IC50值分别为(10.4 ± 0.8) µmol·L−1和(96.0 ± 1.0) µmol·L−1[阳性对照(13.1 ± 1.9) µmol·L−1][5];半日花烷型二萜3α-Hydroxy-ent-labda-8,12E,14-triene-18-oic acid和ent-labda-8(17),12E,14-triene-3α,18-diol对蛋白质酪氨酸磷酸酶(PTP1B)具有抑制活性,其IC50值分别为4.11和8.33 µmol·L−1[6]。因此,为进一步探究光叶巴豆的化学成分,笔者对海南产光叶巴豆枝叶的化学成分及生物活性进行研究,旨在为该植物资源的开发利用提供科学依据。

  • 核磁共振波谱仪(德国Bruker AV-500);旋转蒸发仪(德国Heidolph Laborota);Sephadex LH-20(德国Merck);氘代试剂(德国Merck);分析型高效液相色谱仪(美国Agilent Technologies 1260 Infinity);半制备高效液相色谱仪(美国Agilent Technologies 1260 Infinity Ⅱ);半制备色谱柱(C18,250 mm × 10.0 mm,ID)(日本COSMOSIL公司);超纯水装置(上海博讯实业有限公司);薄层色谱硅胶板及柱色谱硅胶(青岛海洋化工厂);色谱级试剂(天津康科德公司);其他试剂均为重蒸工业试剂;顺铂(上海源叶生物科技有限公司);阿维菌素(上海源叶生物科技有限公司);人慢性髓原白血病细胞株K562、人肝癌细胞株BEL-7401、人胃癌细胞株SCG-7901、人肺癌细胞株A549和HeLa人宫颈癌细胞均购自中国科学院上海生命科学研究院细胞库;全齿复活线虫由云南大学莫明和教授提供。

    光叶巴豆采自海南省昌江县,经中国热带农业科学院热带生物技术研究所黄圣卓博士鉴定为大戟科(Euphorbiaceae)巴豆属(Croton)植物光叶巴豆(Croton laevigatus)。

  • 将干燥的光叶巴豆枝叶样品(4.15 kg)经φ=95%的乙醇常温浸泡提取3次,时间依次为7、5、3 d,合并提取液,过滤,减压浓缩至无醇味,得乙醇提取物。将乙醇提取物分散于水中形成悬浊液,再依次用乙酸乙酯、正丁醇进行萃取,对萃取液进行减压浓缩得到干浸膏,最终获得乙酸乙酯部位(159.0 g)、正丁醇部位(70.0 g)。

    乙酸乙酯萃取物(159.0 g)经小孔吸附树脂,以甲醇/水(40%~100%,体积分数)进行梯度洗脱,经薄层色谱检测,合并相同流分后,得到14个组分(Fr.1~Fr.14)。Fr.2 (790.0 mg)经Sephadex LH-20凝胶柱色谱洗脱,洗脱剂为甲醇,得到6个亚组份(Fr.2.1~Fr.2.6),Fr.2.1 (433.7 mg)经硅胶柱色谱,以石油醚−乙酸乙酯(3∶1~2∶1,体积比)为洗脱剂,得到化合物1 (5.0 mg)、化合物2 (4.6 mg)。Fr.3 (500.0 mg)经Sephadex LH-20凝胶柱色谱洗脱,洗脱剂为甲醇,得到2个亚组份Fr.3.1和Fr.3.2,Fr.3.1 (333.1 mg)经硅胶柱色谱,以氯仿−甲醇(250∶1~50∶1,体积比)为洗脱剂,得到化合物3 (7.0 mg)。Fr.4 (4.29 g)经ODS柱色谱,以甲醇/水(40%~100%,体积分数)进行梯度洗脱,得到16个亚组份(Fr.4.1~Fr.4.16),Fr.4.3经Sephadex LH-20凝胶柱色谱洗脱,洗脱剂为甲醇,得到4个流分(Fr.4.3.1~Fr.4.3.4),Fr.4.3.3(98.1 mg)经硅胶柱色谱,以氯仿−甲醇(500∶1~400∶1,体积比)为洗脱剂,得到化合物8 (13.1 mg),Fr.4.3.4 (50.8 mg)经硅胶柱色谱,以石油醚−乙酸乙酯(6∶1~5∶1,体积比)为洗脱剂,得到化合物9(4.1 mg)、12 (1.1 mg)。Fr.4.8(53.9 mg)经硅胶柱色谱,以石油醚−乙酸乙酯(16∶1~8∶1,体积比)为洗脱剂,得到化合物4(1.7 mg)、5 (3.1 mg)。Fr.4.9 (283.6 mg)经硅胶柱色谱,以石油醚−乙酸乙酯(19∶1~16∶1,体积比)为洗脱剂,得到化合物6 (17.3 mg)。Fr.4.12(131.6 mg)经硅胶柱色谱,以石油醚−乙酸乙酯(16∶1~12∶1,体积比)为洗脱剂,得到化合物7 (4.2 mg)。Fr.5 (10.0 g)经ODS柱色谱,以甲醇/水(50%~100%,体积分数)进行梯度洗脱,得到27个亚组份(Fr.5.1-Fr.5.27),Fr.5.2 (73.5 mg)经Sephadex LH-20凝胶柱色谱洗脱,洗脱剂为甲醇,得到2个流分(Fr.5.2.1和Fr.5.2.2),Fr.5.2.1 (17.1 mg)经半制备型高效液相色谱,以C18柱为色谱柱,用甲醇/水(45∶55,体积比)为洗脱剂,得到化合物10 (2.1 mg),Fr.5.3 (252.6 mg)经Sephadex LH-20凝胶柱色谱洗脱,洗脱剂为甲醇,得到5个流分(Fr.5.3.1-Fr.5.3.5),Fr.5.3.5 (22.2 mg)经半制备型高效液相色谱,以C18柱为色谱柱,用甲醇/水(47∶53,体积比)为洗脱剂,得到化合物11 (2.4 mg)。

  • 利用贝尔曼漏斗法[9]和MTT法[10]分别测定化合物112的全齿复活线虫(Panagrellus redivivus)致死活性和细胞毒活性。

  • 本实验从光叶巴豆中一共分离得到12个化合物,并根据1H NMR、13C NMR和ESI-MS数据鉴定了化合物1~12的结构(图1

    Figure 1.  The chemical structures of compounds 1 - 12

    化合物1 无色油状物(CHCl3);ESI-MS:m/z 229 [M+H]+,分子式C13H24O31H NMR (CDCl3,500 MHz) δ:5.75 (1H,dd,J = 15.7,6.0 Hz,H-8),5.58 (1H,d,J = 15.7 Hz,H-7),4.39 (1H,t,J = 6.0 Hz,H-9),3.86 (1H,m,H-3),1.93 (1H,m,H-5),1.78 (1H,d,J = 12.0 Hz,H-4a),1.61 (1H,d,J = 12.0 Hz,H-2a),1.52 (1H,m,H-2b),1.35 (1H,d,J = 12.0 Hz,H-4b),1.30 (3H,d,J = 6.0 Hz,H-10),0.96 (3H,s,H-11),0.87 (3H,s,H-12),0.79 (3H,d,J = 6.8 Hz,H-13);13C NMR (CDCl3,125 MHz) δ:39.6 (C-1),45.3 (C-2),66.8 (C-3),39.3 (C-4),34.2 (C-5),77.0 (C-6),133.1 (C-7),134.5 (C-8),68.7 (C-9),24.0 (C-10),25.1 (C-11),24.7 (C-12),16.0 (C-13)。以上波谱数据与文献[11]报道的基本一致,故鉴定为(3S,5R,6S,7E,9R)-3,6-dihydroxy-5,6-dihydro-β-ionol。

    化合物2 无色油状物(CHCl3);ESI-MS:m/z 225 [M+H]+,分子式C13H20O31H NMR (CDCl3,500 MHz) δ:5.90 (1H,m,H-7),5.85 (1H,m,H-8),5.78 (1H,s,H-4),4.40 (1H,m,H-9),2.44 (1H,d,J = 17.1 Hz,H-2a),2.23 (1H,d,J = 17.1 Hz,H-2b),1.89 (3H,s,H-13),1.29 (3H,d,J = 6.4 Hz,H-10),1.07 (3H,s,H-11),1.00 (3H,s,H-12);13C NMR (CDCl3,125 MHz) δ:41.3 (C-1),49.8 (C-2),198.2 (C-3),127.0 (C-4),163.0 (C-5),79.2 (C-6),129.0 (C-7),135.9 (C-8),68.2 (C-9),24.2 (C-10),23.0 (C-11),23.9 (C-12),19.1 (C-13)。以上波谱数据与文献[12]报道的基本一致,故鉴定为吐叶醇。

    化合物3 无色油状物(CHCl3);ESI-MS:m/z 227 [M+H]+,分子式C13H22O31H NMR (CDCl3,500 MHz) δ:5.83 (1H,dd,J = 15.8,5.8 Hz,H-8),5.70 (1H,dd,J = 15.8,1.0 Hz,H-7),4.42 (1H,m,H-9),2.83 (1H,d,J = 13.6 Hz,H-2a),2.41 (1H,t,J = 13.0 Hz,H-4a),2.26 (1H,m,H-4b),2.19 (1H,ddd,J = 13.7,4.5,2.2 Hz,H-5),1.90 (1H,dd,J = 13.6,1.9 Hz,H-2b),1.32 (3H,d,J = 6.4 Hz,C-10),0.96 (3H,s,C-12),0.93 (3H,s,C-11),0.88 (3H,d,J = 6.4 Hz,C-13);13C NMR (CDCl3,125 MHz) δ:42.7 (C-1),51.6 (C-2),211.6 (C-3),36.6 (C-4),45.3 (C-5),77.3 (C-6),131.9 (C-7),135.3 (C-8),68.5 (C-9),24.1 (C-10),24.6 (C-11),24.5 (C-12),16.0 (C-13)。以上波谱数据与文献[13]报道的基本一致,故鉴定为4,5-dihydroblumenol A。

    化合物4 无色油状物(CHCl3);ESI-MS:m/z 239 [M+H]+,分子式C15H26O21H NMR (CDCl3,500 MHz) δ:4.98 (1H,s,H-15b),4.84 (1H,s,H-15a),3.95 (1H,dd,J = 11.7,4.9 Hz,H-1),3.51 (1H,t,J = 10.1 Hz,H-6),2.29 (2H,m,H-3),2.21 (1H,m,H-11),2.06 (1H,dt,J = 14.0,3.2 Hz,H-9b),1.89 (1H,m,H-2a),1.84 (1H,d,J = 10.1 Hz,H-5),1.62 (1H,dd,J = 11.7,5.9 Hz,H-2b),1.47 (1H,m,H-8b),1.29 (1H,m,H-8a),1.26 (1H,m,H-7),1.05 (1H,td,J = 14.0,4.0 Hz,H-9a),0.94 (3H,d,J = 7.1 Hz,H-13),0.87 (3H,s,H-14),0.84 (3H,d,J = 7.1 Hz,H-12);13C NMR (CDCl3,125 MHz) δ:68.3 (C-1),31.2 (C-2),29.9 (C-3),145.6 (C-4),61.8 (C-5),67.3 (C-6),49.2 (C-7),18.2 (C-8),34.5 (C-9),40.2 (C-10),26.6 (C-11),16.4 (C-12),21.1 (C-13),21.5 (C-14),114.4 (C-15)。以上波谱数据与文献[14]报道的基本一致,故鉴定为5-epi-eudesma-4 (15)-ene-1β,6β-diol。

    化合物5 淡黄色油状物(CHCl3);ESI-MS:m/z 239 [M+H]+,分子式C15H26O21H NMR (CDCl3,500 MHz) δ:1.50~1.90 (8H,m,H-1,2,3,8,9),1.25 (3H,s,H-14),1.21 (1H,m,H-5),1.17 (3H,s,H-15),1.04 (6H,s,H-12,13),0.91 (1H,m,H-8),0.64 (1H,ddd,J = 11.0,9.6,6.2 Hz,H-7),0.43 (1H,dd,J = 11.0,9.6 Hz,H-6);13C NMR (CDCl3,125 MHz) δ:56.5 (C-1),23.9 (C-2),41.3 (C-3),80.5 (C-4),48.6 (C-5),28.4 (C-6),26.8 (C-7),20.3 (C-8),44.6 (C-9),75.2 (C-10),19.7 (C-11),28.8 (C-12),16.6 (C-13),24.7 (C-14),20.5 (C-15)。以上波谱数据与文献[15]报道的基本一致,故鉴定为aromadendrane-4β,10β-diol。

    化合物6 无色油状物(CHCl3);ESI-MS:m/z 239 [M+H]+,分子式C15H26O21H NMR (CDCl3,500 MHz) δ:5.01 (1H,s,H-15a),4.73 (1H,s,H-15b),3.70 (1H,t,J = 9.8 Hz,H-6),3.41 (1H,dd,J = 11.6,4.7 Hz,H-1),2.32 (1H,ddd,J = 13.2,5.0,2.1 Hz,H-3a),2.23 (1H,m,H-11),2.07 (1H,td,J = 13.2,5.3 Hz,H-3b),1.90 (1H,m,H-9a),1.86 (1H,m,H-2b),1.73 (1H,d,J = 9.8 Hz,H-5),1.55 (1H,m,H-2a),1.51 (1H,m,H-8b),1.29 (1H,m,H-7),1.24 (1H,m,H-8a),1.23 (1H,m,H-9b),0.93 (3H,d,J = 7.0 Hz,H-12),0.85 (3H,d,J = 7.0 Hz,H-13),0.69 (3H,s,H-14),13C NMR (CDCl3,125 MHz) δ:79.1 (C-1),32.0 (C-2),35.2 (C-3),146.3 (C-4),56.0 (C-5),67.2 (C-6),49.4 (C-7),18.2 (C-8),36.4 (C-9),41.8 (C-10),26.1 (C-11),21.2 (C-12),16.3 (C-13),11.7 (C-14),107.9 (C-15)。以上波谱数据与文献[16]报道的基本一致,故鉴定为ent-4 (15)-eudesmene-1β,6α-diol。

    化合物7 淡黄色油状物(CHCl3);ESI-MS:m/z 239 [M+H]+,分子式C15H26O21H NMR (CDCl3,500 MHz) δ:4.95 (1H,d,J = 1.1 Hz,H-15b),4.81 (1H,d,J = 1.1 Hz,H-15a),3.59 (1H,dd,J = 11.3,4.9 Hz,H-1),3.23 (1H,dd,J = 9.8,2.4 Hz,H-7),2.33 (1H,m,H-6),2.30 (1H,m,H-3b),2.11 (1H,td,J = 13.5,5.7 Hz,H-3a),1.92 (1H,m,H-8b),1.87 (1H,m,H-2a),1.83 (1H,d,J = 10.9 Hz,H-5),1.74 (1H,m,H-9b),1.74 (1H,m,H-11),1.50 (1H,m,H-2b),1.39 (1H,m,H-9a),1.32 (1H,m,H-8a),0.99 (3H,d,J = 6.8 Hz,H-13),0.90 (3H,d,J = 6.9 Hz,H-12),0.66 (3H,s,H-14);13C NMR (CDCl3,125 MHz) δ:79.1 (C-1),32.0 (C-2),35.1 (C-3),149.1 (C-4),56.6 (C-5),39.5 (C-6),82.9 (C-7),26.2 (C-8),37.5 (C-9),49.7 (C-10),31.5 (C-11),14.9 (C-12),20.7 (C-13),12.4 (C-14),107.8 (C-15)。以上波谱数据与文献[17]报道的基本一致,故鉴定为(7R*)-opposit-4 (15)-ene-1β,7-diol。

    化合物8 乳白色油状物(CHCl3);ESI-MS:m/z 419 [M+H]+,分子式C22H26O81H NMR (CDCl3,500 MHz) δ:6.58 (4H,s,H-2,6,2′,6′),5.53 (2H,s,OH-4,4′),4.73 (2H,d,J = 3.9 Hz,H-7,7′),4.28 (2H,dd,J = 8.8,6.5 Hz,H-9a,9′a),3.92 (2H,m,H-9b,9′b),3.89 (12H,s,OMe-3,5,3′,5′),3.09 (2H,m,H-8,8′);13C NMR (CDCl3,125 MHz) δ:54.5 (C-8,8′),86.1 (C-7,7′),71.9 (C-9,9′),132.1 (C-1,1′),102.8 (C-2,6,2′,6′),147.2 (C-3,5,3′,5′),134.3 (C-4,4′),56.5 (OMe-3,5,3′,5′)。以上波谱数据与文献[18]报道的基本一致,故鉴定为丁香脂素。

    化合物9 乳白色油状物(CHCl3);ESI-MS:m/z 739 [2M+Na]+,分子式C20H20O61H NMR (CDCl3,500 MHz) δ:6.90 (2H,d,J = 2.1 Hz,H-5,5′),6.89 (2H,d,J = 8.1 Hz,H-8,8′),6.82 (2H,dd,J = 8.1,2.1 Hz,H-7,7′),4.74 (2H,d,J = 4.2 Hz,H-4,4′),4.24 (2H,dt,J = 9.2,6.9 Hz,H-2b,2b′),3.91 (6H,s,OMe-6,6′),3.88 (2H,dd,J = 9.2,3.6 Hz,H-2a,2a′),3.10 (2H,m,H-3,3′);13C NMR (CDCl3,125 MHz) δ:71.8 (C-2,2′),54.3 (C-3,3′),86.0 (C-4,4′),108.7 (C-5,5′),146.8 (C-6,6′),119.1 (C-7,7′),114.4 (C-8,8′),145.4 (C-9,9′),133.1 (C-10,10′),56.1 (OMe-6,6′)。以上波谱数据与文献[19]报道的基本一致,故鉴定为rel- (3R,3′S,4R,4′S)-3,3′,4,4′-tetrahydro-6,6′-dimethoxy[33′-bi-2H-benzopyran]-4,4′-diol。

    化合物10 无色油状物(CHCl3);ESI-MS:m/z 411 [M+Na]+,分子式C21H24O71H NMR (CDCl3,500 MHz) δ:6.92 (2H,m,H-2′,5′),6.82 (1H,dd,J = 8.1,1.8 Hz,H-6′),6.58 (2H,s,H-2,6),5.59 (1H,s,OH-4′),5.49 (1H,s,OH-4),4.75 (1H,d,J = 4.8 Hz,H-7),4.72 (1H,d,J = 4.8 Hz,H-7′),4.26 (2H,m,H-9b,9′b),3.91 (3H,s,OMe-3′),3.90 (6H,s,OMe-3,5),3.88 (2H,m,H-9a,9′a),3.10 (2H,m,H-8,8′);13C NMR (CDCl3,125 MHz) δ:132.3 (C-1),102.8 (C-2,6),147.3 (C-3,5),134.4 (C-4),86.0 (C-7),54.3 (C-8),71.8 (C-9),133.0 (C-1′),108.7 (C-2′),146.8 (C-3′),145.4 (C-4′),114.4 (C-5′),119.1 (C-6′),86.3 (C-7′),54.6 (C-8′),72.0 (C-9′),56.5 (OMe-3,5),56.1 (OMe-3′)。以上波谱数据与文献[20]报道的基本一致,故鉴定为(+)-皮树脂醇。

    化合物11 无色油状物(CHCl3);ESI-MS:m/z 583 [M-H],分子式C31H36O111H NMR (CDCl3,500 MHz) δ:6.96 (1H,d,J = 1.2 Hz,H-2″),6.90 (1H,d,J = 1.5 Hz,H-2′),6.89 (1H,d,J = 8.1 Hz,H-5′),6.85 (1H,d,J = 8.2 Hz,H-5″),6.83 (1H,dd,J = 8.1,1.5 Hz,H-6′),6.74 (1H,dd,J = 8.2,1.2 Hz,H-6″),6.63 (2H,s,H-2,6),4.99 (1H,t,J = 3.9 Hz,H-7″),4.77 (1H,d,J = 4.9 Hz,H-7′),4.75 (1H,d,J = 4.9 Hz,H-7),4.29 (2H,m,H-9a,9′a),4.12 (1H,m,H-8″),3.93 (3H,m,H-9b,9′b,9″a),3.91 (3H,s,OMe-3′),3.90 (6H,s,OMe-3,5),3.89 (3H,s,OMe-3″),3.49 (3H,m,H-9″b),3.12 (2H,m,H-8,8′);13C NMR (CDCl3,125 MHz) δ:138.0 (C-1),102.9 (C-2,6),153.6 (C-3,5),134.4 (C-4),86.2 (C-7),54.7 (C-8),72.3 (C-9),132.9 (C-1′),108.7 (C-2′),146.9 (C-3′),145.5 (C-4′),114.4 (C-5′),119.1 (C-6′),85.9 (C-7′),54.2 (C-8′),71.7 (C-9′),131.4 (C-1″),108.5 (C-2″),146.7 (C-3″),145.0 (C-4″),114.3 (C-5″),118.9 (C-6″),72.7 (C-7″),87.3 (C-8″),60.7 (C-9″),56.4 (OMe-3,5),56.1 (OMe-3′,3″)。以上波谱数据与文献[21]报道的基本一致,故鉴定为thero-ficusesquilignan A。

    化合物12 淡黄色油状物(CHCl3);ESI-MS:m/z 179 [M+H]+,分子式C10H10O31H NMR (CDCl3,500 MHz) δ:7.64 (1H,d,J = 16.0 Hz,H-7),7.43 (2H,d,J = 8.6 Hz,H-2,6),6.84 (2H,d,J = 8.6 Hz,H-3,5),6.30 (1H,d,J = 16.0 Hz,H-8),3.79 (3H,s,OMe-9);13C NMR (CDCl3,125 MHz) δ:127.1 (C-1),130.1 (C-2,6),116.0 (C-3,5),157.7 (C-4),144.6 (C-7),115.5 (C-8),167.9 (C-9),51.7 (OMe-9)。以上波谱数据与文献[22]报道的基本一致,故鉴定为反式对羟基肉桂酸甲酯。

    本研究从光叶巴豆中共分离鉴定了12个化合物,其中,包括降倍半萜类化合物3个,倍半萜类化合物4个及苯丙素类化合物5个,全齿复活线虫致死活性测试结果(表1)表明,倍半萜类化合物1~7对全齿复活线虫的致死活性相对较低或没有,而苯丙素类化合物8~12对全齿复活线虫具有较好的致死活性。所有化合物均无细胞毒活性。

    组别
    Group
    全齿复活线虫校正死亡率/%
    Corrected mortality of P. redivivus
    组别
    Group
    全齿复活线虫校正死亡率/%
    Corrected mortality of P. redivivus
    1 14.40 ± 0.04 8 34.45 ± 0.02
    2 9 52.42 ± 0.08
    3 10 49.16 ± 0.06
    4 11 62.91 ± 0.04
    5 12 91.42 ± 0.01
    6 7.71 ± 0.04 阳性对照 100 ± 0.00
    7 33.35 ± 0.06
      注:阳性对照为阿维菌素 (2.5 g·L−1);化合物质量浓度为2.5 g·L−1;“—”在活性初筛条件下未观测到抑制活性。
      Note: Abamectin (2.5 g·L−1) was used as positive control; the mass concentration of the compounds was 2.5 g·L−1; “—”: No inhibitory activity.

    Table 1.  Biological activities of compounds 1-12 against Panagrellus redivivus

  • 本实验获得的12个化合物均为首次从光叶巴豆中分离得到,其中,苯丙素类化合物(8~12)对全齿复活线虫具有较好的致死活性,以反式对羟基桂皮酸甲酯(12)活性最高。据文献[23]报道,顺式对羟基桂皮酸甲酯具有较好的全齿复活线虫致死活性,因此,推测苯丙素类化合物可能对全齿复活线虫具有一定程度的致死活性,其具体作用机制尚有待进一步的研究。前人对光叶巴豆研究多是基于抗炎活性、细胞毒活性、酶抑制活性等方面[5-7]。本研究首次对光叶巴豆化合物进行了全齿复活线虫致死活性和细胞毒活性测试,旨在进一步探索光叶巴豆的开发利用,使这一传统黎药资源能在更广阔的领域得到利用。

Reference (23)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return