Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Name
E-mail
Phone
Title
Content
Verification Code
Volume 11 Issue 2
Jul.  2020
Turn off MathJax
Article Contents

XIAO Ke, ZHOU Shuangqing, XU Yun, WU Wenqiang, XIA Wei, ZAHNG Rongping, HUANG Dongyi, HUANG Xiaolong. Isolation, Identification and Antibacterial Activity of Actinomycetes Associated with Marine Sponge[J]. Journal of Tropical Biology, 2020, 11(2): 156-162. doi: 10.15886/j.cnki.rdswxb.2020.02.005
Citation: XIAO Ke, ZHOU Shuangqing, XU Yun, WU Wenqiang, XIA Wei, ZAHNG Rongping, HUANG Dongyi, HUANG Xiaolong. Isolation, Identification and Antibacterial Activity of Actinomycetes Associated with Marine Sponge[J]. Journal of Tropical Biology, 2020, 11(2): 156-162. doi: 10.15886/j.cnki.rdswxb.2020.02.005

Isolation, Identification and Antibacterial Activity of Actinomycetes Associated with Marine Sponge

doi: 10.15886/j.cnki.rdswxb.2020.02.005
  • Received Date: 2020-02-02
  • Rev Recd Date: 2020-02-20
  • Available Online: 2020-07-03
  • Publish Date: 2020-06-01
  • To investigate microbial diversity and potential pharmaceutical value of actinomycetes associated with marine sponges from Hainan actinomycetes associated with marine sponges from Wenchang sea area in Hainan were collected, isolated and identified, and their anti-microbial activities were analyzed. Four media were used to isolate and purify the actinomycetes from the marine sponges, and the isolates were identified according to their 16S rRNA sequences. the antibacterial activities of their fermentated products were tested using standard disk diffusion. Results showed that a total of 50 strains of actinomycetes were isolated from 4 types marine sponges. The isolates belonged to 7 genera within 6 families, 5 suborders of Actinobacteria, and contained Streptomyces, micromonospora, Rhodococcus, Saccharopolyspora, Isoptericola, Mycobacterium and Krasilnikoviella, among which Krasilnikoviella was first recorded isolated from marine sponges. Four isolates were potential novel species. The antimicrobial test showed that 48% of the total isolates displayed antibacterial activity while 24% inhibited plant filamentous pathogenic fungi. The diversity and antimicrobial activity of the fermentated products of the actinomycetes associated with marine sponges collected from Wenchang sea area in Hainan were preliminarily revealed.
  • [1] YANG C, QIAN R, XU Y, et al. Marine actinomycetes-derived natural products [J]. Current Topics in Medicinal Chemistry, 2019(19): 1 − 51.
    [2] ABDELMOHSEN U R, BAYER K, HENTSCHEL U. Diversity, abundance and natural products of marine sponge-associated actinomycetes [J]. Nat Prod Rep, 2014(31): 381 − 399.
    [3] SELVIN J, NINAWE A, S EGHAL KIRAN G, et al. Sponge-microbial interactions: Ecological implications and bioprospecting avenues [J]. Critical Reviews in Microbiology, 2010, 36(1): 82 − 90. doi:  10.3109/10408410903397340
    [4] ZHOU S, XIAO K, HUANG D, et al. Complete genome sequence of Streptomyces spongiicola HNM0071T, a marine sponge-associated actinomycete producing staurosporine and echinomycin [J]. Marine Genomics, 2019(43): 61 − 64.
    [5] 鲍时翔, 吴春燕, 贺乐, 等. 抗流感病毒H1N1海绵放线菌的筛选及菌株HA10201的鉴定[J]. 中国海洋药物, 2012(1): 10 − 13.
    [6] SÁNCHEZ C, MÉNDEZ C, SALAS J A. Indolocarbazole natural products: Occurrence, biosynthesis, and biological Activity [J]. Natural Product Reports, 2007, 23(6): 1007 − 1045.
    [7] HUANG Y, XI L, RUAN J. Diversity and biosynthetic potential of culturable actinomycetes associated with marine sponges in the China Seas [J]. International Journal of Molecular Sciences, 2012, 13(12): 5917 − 5932.
    [8] HUANG X, ZHOU S, HUANG D, et al. Streptomyces spongiicola sp. nov. an actinomycete derived from marine sponge [J]. International Journal of Systematic & Evolutionary Microbiology, 2016, 66(2): 738 − 743.
    [9] 周双清, 黄小龙, 黄东益, 等. Chelex−100快速提取放线菌DNA作为PCR扩增模板[J]. 生物技术通报, 2010(2): 123 − 125.
    [10] CHENG C, OTHMAN E M, REIMER A, et al. Ageloline, a new antioxidant and antichlamydial quinolone from the marine sponge-derived bacterium Streptomyces sp SBT345 [J]. Tetrahedron Lett, 2016(57): 2786 − 2789.
    [11] JOSEPH F J R S, INIYAN A M, VINCENT S G P. HR-LC-MS based analysis of two antibacterial metabolites from a marine sponge symbiont Streptomyces pharmamarensisICN40 [J]. Microbial Pathogenesis, 2017(111): 450 − 457.
    [12] KITANI S, UEGUCHI T, IGARASHI Y, et al. RakicidinF, a new antibacterial cyclic depsipeptide from a marine sponge-derived Streptomyces sp [J]. The Journal of Antibiotics, 2018, 71(1): 139. doi:  10.1038/ja.2017.92
    [13] ZHANG H, ZHENG W, HUANG J, et al. Actinoalloteichus hymeniacidonis sp.nov., an actinomycete isolated from the marine sponge Hymeniacidon perleve [J]. International Journal of Systematic and Evolutionary Microbiology, 2006(56): 2309 − 2312.
    [14] PIMENTEL-ELARDO S M, TIRO L P, GROZDANOV L, et al. Saccharopolysporacebuensis sp.nov., a novel actinomycete isolated from a Philippine sponge (Porifera) [J]. International Journal of Systematic and Evolutionary Microbiology, 2008, 58(3): 628 − 632. doi:  10.1099/ijs.0.64971-0
    [15] ZHANG L, XI L, RUAN J, et al. Micromonospora yangpuensis sp.nov., isolated from a sponge [J]. International Journal of Systematic and Evolutionary Microbiology, 2012(62): 272 − 27.
    [16] SUPONG K, SURIYACHADKUN C, SUWANBORIRUX K, et al. Verrucosispora andamanensis sp.nov., isolated from a marine sponge [J]. International Journal of Systematic and Evolutionary Microbiology, 2013, 63(11): 3970 − 3974.
    [17] HUANG X L, ZHOU S Q, HUANG D Y, et al. Streptomyces spongiicola sp.nov., an actinomycete derived from marine sponge [J]. International Journal of Systematic and Evolutionary Microbiology, 2016, 66(2): 738 − 743. doi:  10.1099/ijsem.0.000782
    [18] SOUZA D T, DA SILVA F S P, DA SILVA L J, et al. Saccharopolyspora spongiae sp.nov., a novel actinomycete isolated from the marine sponge Scopalinaruetzleri (Wiedenmayer, 1977) [J]. International Journal of Systematic and Evolutionary Microbiology, 2017, 67(6): 2019 − 2025. doi:  10.1099/ijsem.0.001912
    [19] LI L, WANG J, ZHOU Y, et al. Streptomyces reniochalinaesp.nov.and Streptomyces diacarni sp.nov., from marine sponges [J]. International Journal of Systematic and Evolutionary Microbiology, 2018(69): 99 − 104.
    [20] HUANG X L, KONG F D, ZHOU S Q, et al. Streptomyces tirandamycinicus sp.nov., a novel marine sponge-derived actinobacterium with potential against Streptococcus agalactiae [J]. Frontiers in Microbiology, 2019, 10: 482. doi:  10.3389/fmicb.2019.00482
    [21] PIMENTEL-ELARDO S M, GULDER T A, HENTSCHEL U, et al. Cebulactams A1 and A2, new macrolactams isolated from Saccharopolyspora cebuensis, the first obligate marine strain of the genus Saccharopolyspora [J]. Tetrahedron Letters, 2008, 49(48): 6889 − 6892. doi:  10.1016/j.tetlet.2008.09.094
    [22] YAN X, CHEN J J, ADHIKARI A, et al. Genome mining of Micromonospora yangpuensis DSM 45577 as a producer of an anthraquinone-fused enediyne [J]. Organic Letters, 2017, 19(22): 6192 − 6195. doi:  10.1021/acs.orglett.7b03120
    [23] TAWFIKE A, ATTIA E Z, DESOUKEY S Y, et al. New bioactive metabolites from the elicited marine sponge-derived bacterium Actinokineospora spheciospongiae sp.nov [J]. AMB Express, 2019, 9(1): 1 − 9. doi:  10.1186/s13568-018-0730-0
    [24] 王聪, 梅显贵, 朱伟明. 海洋链霉菌来源的天然产物[J]. 海洋科学集刊, 2016, 51: 86 − 124.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(1)  / Tables(3)

Article views(714) PDF downloads(88) Cited by()

Proportional views
Related

Isolation, Identification and Antibacterial Activity of Actinomycetes Associated with Marine Sponge

doi: 10.15886/j.cnki.rdswxb.2020.02.005

Abstract: To investigate microbial diversity and potential pharmaceutical value of actinomycetes associated with marine sponges from Hainan actinomycetes associated with marine sponges from Wenchang sea area in Hainan were collected, isolated and identified, and their anti-microbial activities were analyzed. Four media were used to isolate and purify the actinomycetes from the marine sponges, and the isolates were identified according to their 16S rRNA sequences. the antibacterial activities of their fermentated products were tested using standard disk diffusion. Results showed that a total of 50 strains of actinomycetes were isolated from 4 types marine sponges. The isolates belonged to 7 genera within 6 families, 5 suborders of Actinobacteria, and contained Streptomyces, micromonospora, Rhodococcus, Saccharopolyspora, Isoptericola, Mycobacterium and Krasilnikoviella, among which Krasilnikoviella was first recorded isolated from marine sponges. Four isolates were potential novel species. The antimicrobial test showed that 48% of the total isolates displayed antibacterial activity while 24% inhibited plant filamentous pathogenic fungi. The diversity and antimicrobial activity of the fermentated products of the actinomycetes associated with marine sponges collected from Wenchang sea area in Hainan were preliminarily revealed.

XIAO Ke, ZHOU Shuangqing, XU Yun, WU Wenqiang, XIA Wei, ZAHNG Rongping, HUANG Dongyi, HUANG Xiaolong. Isolation, Identification and Antibacterial Activity of Actinomycetes Associated with Marine Sponge[J]. Journal of Tropical Biology, 2020, 11(2): 156-162. doi: 10.15886/j.cnki.rdswxb.2020.02.005
Citation: XIAO Ke, ZHOU Shuangqing, XU Yun, WU Wenqiang, XIA Wei, ZAHNG Rongping, HUANG Dongyi, HUANG Xiaolong. Isolation, Identification and Antibacterial Activity of Actinomycetes Associated with Marine Sponge[J]. Journal of Tropical Biology, 2020, 11(2): 156-162. doi: 10.15886/j.cnki.rdswxb.2020.02.005
  • 海洋放线菌是海洋微生物的重要组成部分,也是海洋微生物新天然产物挖掘的重要资源之一[1]。海洋放线菌产生多种新天然产物,结构类型包括聚酮类、生物碱类、脂肪酸类、肽类、萜烯类等,并具有多种生物活性,包括抗菌、抗寄生虫、抗疟、抗炎、抗氧化、抗肿瘤以及免疫调节剂等[2]。因此,海洋放线菌一直受到国内外海洋天然产物研究者的青睐。海洋放线菌广泛栖息于各种海洋生态环境,包括海水、海底沉积物、海洋动物(如海绵、珊瑚)、海洋植物(如海藻、海草)表面及内部组织等。其中,海绵是海洋放线菌的良好宿主,海洋放线菌与海绵形成了附生、共生或者内生的相互关系[3]。有研究表明,海绵共附生放线菌不仅种类丰富多样,而且产生结构新颖的次级代谢产物[1]。这些次级代谢产物在海绵的化学防御中起到了重要的作用,同时还具有抗菌、抗肿瘤和抗寄生虫等生物活性,具有潜在的药用开发价值[4]。因此,近年来海绵共附生放线菌已成为海洋微生物天然产物研究的热点。海南岛地处热带,四面环海,海绵种类繁多,为研究海绵共附生放线菌提供了丰富的材料。鲍时翔等[5-6]从三亚和琼海海域采集的海绵中分别分离到具抗肿瘤活性和抗流感病毒活性的共附生链霉菌。HUANG Y等[7]从南海采集的海绵样品中分离到多个种属的共附生放线菌,27.5%的菌株具有抗菌活性,91%的菌株含有聚酮类或非核糖体肽合成酶基因。本实验室从三亚海域采集的海绵中分离到放线菌新种Streptomyces spongiicola HNM0071,并从中发现了抗肿瘤先导化合物十字孢碱和棘霉素[4,8]。研究显示海南的海绵共附生放线菌资源具有种类丰富新颖、药用价值高的特点,值得广泛深入的研究。基于此,笔者从海南文昌海域采集多种海绵作为样品,分离其共附生放线菌、并分析其菌株多样性和抗菌活性,旨在为此类海洋共附生放线菌资源的前期开发提供资源和科学依据。

  • 海绵样品:采集于海南文昌东郊椰林海域,样品采集后,4 h 内带回实验室 −20 ℃冰箱保存备用,共4种海绵样品(编号:WC−33,WC−4,WC−20,WC−24)。病原细菌:大肠埃希氏菌(Escherichia coli)、金黄色葡萄球菌(Staphylococcus aureus)、耐甲氧西林金黄色葡萄球菌(Methicillin-resistant Staphylococcus aureus)、无乳链球菌(Streptococcus agalactiae);病原真菌:薯蓣炭疽病菌(Colletotrichum gloeosporioidesCg9)、芒果炭疽病菌(ColletotrichumasianumT0408)、橡胶炭疽病菌(Colletotrichum gloeosporioidesRC178)、香蕉枯萎病菌(Fusarium oxysporumf. sp. cubenserace 4)、木薯采后根腐病菌(Lasiodiplodia theobromae)和水稻稻瘟病菌(Magnaporthe grisea);以上病原细菌均来自本实验室保存菌株。

  • (1)分离培养基Ⅰ:可溶性淀粉20 g,KN03 1 g,K2HPO4·3H20 0.5 g,MgS04·7H20 0.5 g,NaCl 0.5 g,FeS04·7H20 0.01 g,陈海水500 mL,自来水500 mL,琼脂 20 g,pH 7.4~7.6。(2)分离培养基Ⅱ:甘油6 mL,精氨酸1.0 g,磷酸氢二钾1.0 g,硫酸镁0.5 g,琼脂20 g,陈海水500 mL,自来水500 mL,pH自然。(3)分离培养基Ⅲ:葡萄糖1 g,蛋白胨0.5 g,胰胨0.3 g,NaCl0.5 g,复合维生素3.75 mg(维生素B1,核黄素,烟酸,维生素B6,泛酸钙,肌醇,p−氨基苯甲酸各0.5 mg,生物素0.25 mg),陈海水500 mL,自来水500 mL,琼脂20g,pH 7.2。(4)分离培养基Ⅳ:酵母浸粉4 g,麦芽浸粉 10 g,葡萄糖4 g,琼脂 20 g,陈海水500 mL,自来水500 mL,pH 7.0。以上4种分离培养基的选用基于不同的碳氮源组合和不同的pH值,以适应不同海洋放线菌的生长需求。

    抑制剂:放线菌酮100 mg·L−1和重铬酸钾75 mg·L−1(加入所有分离培养基中);ISP2培养基:酵母浸粉4 g,麦芽浸粉 10 g,葡萄糖4 g,陈海水500 mL,自来水500 mL,琼脂 20 g,pH 7.0;发酵培养基:酵母浸粉4 g,麦芽浸粉 10 g,葡萄糖4 g,陈海水500 mL,自来水500 mL,pH 7.0。

  • 将采集的海绵样品用无菌海水清洗3次,除去表面附着物及其他杂质;称取海绵样品各 1 g,剪碎,置于无菌研钵中;加入10 mL无菌水研磨成匀浆,旋涡振荡1 min,静置30 s,吸取上清液按体积比为(1∶10),(1∶100),(1∶1 000)的比例稀释;取稀释100 μL分别涂布于4种分离培养基,28 ℃,培养7~28 d;菌落长出后,挑取单菌落到ISP2培养基上,反复纯化。纯化后的菌株分别保存于ISP2斜面和 −20 ℃的无菌甘油(20%)。

  • 从分离的菌株中选取形态特征差异较大的菌株进行16S rRNA序列分析,放线菌DNA的提取参照周双清等[9]的方法,即挑取绿豆大小的放线菌单菌落于无菌的1.5 mL Eppendorf管中备用;在装有菌体的Eppendorf管中加入0.5 mL 10%(w/v)的无菌Chelex-100溶液,在旋涡混合器上振荡5 s,沸水浴10 min,冷却至室温后10 000 r·min−1离心10 min,−20 ℃保存备用。取上清作为PCR的模板进行16S rRNA基因扩增,PCR引物序列:27F(AGAGTTTGATCCTGGCTCAG),1492R(GGTTACCTTGTTACGACTT),扩增产物送往上海生物工程有限公司进行测序。根据待测菌株的16S rRNA基因测定序列的结果,将获得的序列登录EzTaxon数据库(https://www.ezbiocloud.net/)中做同源序列比对搜索,以确定菌株的种属。

  • 用无菌竹签挑取绿豆大小菌块接种发酵培养基,28 ℃,180 r·min−1摇床培养7~10 d,三倍体积的乙酸乙酯萃取发酵培养液3次,萃取液合并后经减压旋蒸浓缩得粗提物,将粗提物溶解于4 mL甲醇,得到菌株发酵提取物。(1)抗细菌活性评价:取10 μL的上清液加在直径为6 mm 的滤纸片上,待滤纸片风干后,贴在已分别接种了4种病原细菌的琼脂营养培养基表面(细菌浓度1×106 cfu·mL−1),28 ℃培养1 d,采用十字交叉法测定抑菌圈直径,重复3次。(2)抗真菌活性评价:用无菌竹签挑取病原真菌菌块置于PDA平板中心,在距离PDA平板中心2 cm处贴滴加有发酵提取物的滤纸片,左右各1片,3点成线,均匀排列,28 ℃培养5~7 d,观察并计算抑制率,重复3次。

             抑制率=(对照菌落直径−处理菌落直径)/ 对照菌落直径。

  • 笔者采用 4 种分离培养基,对采集于海南文昌海域的 4种海绵的共附生放线菌进行分离纯化,共获得50株纯化的放线菌。为确定分离菌株的分类地位,依据菌株菌落形态差异将分离菌株初步分组,挑选出各组中的代表性特征菌株进行下一步分析,共选择22株菌株,并扩增其16S rRNA序列测序分析。结果(图1)表明,这50株菌株隶属于6个科(StreptomycineaeMicromonosporineaePseudonocardiaceaeNocardiaceaeCorynebacterineaePromicromonosporaceae),7个属(链霉菌属Streptomyces、小单孢菌属Micromonospora、栖白蚁菌属IsoptericolaKrasilnikoviella属、分枝杆菌属Mycobacterium、红球菌属Rhodococcus、糖多孢菌属Saccharopolyspora)。其中链霉菌属Streptomyces 为优势属,共分离得到19株菌,约占38.00%;其次为小单孢菌属Micromonospora,共分离得到18株菌,约占36.00%;Krasilnikoviella属分离得到7株菌,约占14.00%;红球菌属Rhodococcus和栖白蚁菌属Isoptericola都分别分离得到了2株菌,约占总数的8.00%;分枝杆菌属Mycobacterium和糖多孢菌属Saccharopolyspora各分离到了1株菌,约占总数的4.00%。此外,红球菌属菌株HNM0569、链霉菌属菌株HNM0574、小单孢菌属菌株HNM0616以及分枝杆菌属菌株HNM0591与亲缘关系最近的有效发表种的 16S r RNA 基因序列的相似性都≤98.7%(表1)。根据使用基因组数据进行原核生物分类的最低标准[10],这4个菌株可能是潜在的新物种。

    Figure 1.  Diversity of sponge symbiotic actinomycetes

    编号NumberingGeneBank ID样品来源
    Sample source
    最相似典型菌株(登录号)
    The most similar typical strain (login number)
    相似度/%
    Similarity
    HNM0594 MN446727 WC−4 Isoptericolacucumis AP-38 T(KU201961) 99.14
    HNM0579 MN446724 WC−20 Isoptericolananjingensis H17 T(HQ222356) 99.93
    HNM0562 MN446736 WC−33 Krasilnikoviellaflava DSM 21481 T(jgi.1053042) 99.79
    HNM0577 MN446737 WC−33 Krasilnikoviellamuralis T6220-5-2bT(LC148843) 99.58
    HNM0617 MN446738 WC−33 Micromonosporaaurantiaca ATCC 27029T(CP002162) 99.58
    HNM0608 MN446730 WC−20 Micromonosporachalcea DSM 43026 T(X92594) 99.06
    HNM0616 MN446734 WC−33 Micromonosporaechinofusca DSM 43913 T(LT607733) 98.70
    HNM0609 MN446731 WC−4 Micromonosporasediminicola DSM 45794T(FLRH01000004) 99.85
    HNM0615 MN446733 WC−33 Micromonosporasediminis CH3-3 T(AB889541) 99.78
    HNM0619 MN446735 WC−33 Micromonosporaterminaliae TMS7 T(KX394339) 99.28
    HNM0581 MN446725 WC−20 Micromonosporatrujilloniae234402T(HQ123435) 99.03
    HNM0611 MN446732 WC−33 Micromonosporatulbaghiae DSM 45142 T(jgi.1058868) 99.13
    HNM0591 MN446726 WC−4 Mycobacterium fragaeDSM 45731T(LQOW01000023) 92.67
    HNM0569 MN446720 WC−33 Rhodococcusgannanensis M1T(KX887333) 98.05
    HNM0563 MN446717 WC−33 Rhodococcusphenolicus DSM 44812 T(LRRH01000094) 98.89
    HNM0595 MN446728 WC−4 Saccharopolysporaindica VRC122 T(JX411621) 99.28
    HNM0578 MN446723 WC−33 Streptomyces araujoniaeASBV-1T (EU792889) 99.50
    HNM0565 MN446718 WC−33 Streptomyces diastaticusNRRL B-1773 T(DQ026631) 99.28
    HNM0575 MN446722 WC−33 Streptomyces nanshensis SCSIO 01066T(EU589334) 98.78
    HNM0596 MN446729 WC−24 Streptomyces plicatus NBRC 13071 T(AB184291) 99.64
    HNM0568 MN446719 WC−33 Streptomyces sedi YIM 65188 T(EU925562) 99.30
    HNM0574 MN446721 WC−33 Streptomyces xishensis YIM M 10378 T(HQ585118) 97.44

    Table 1.  16S r RNA gene sequence analysis of representative strains

  • 各海绵样品中共附生放线菌分离结果(表2)表明,样品WC−33分离得到的菌株数量为26株,占分离种属的52%,其次为样品WC−4,共分离得到16株菌,样品WC−20上分离得到5株菌,样品WC−24上分离得到的菌株最少,只有3株。各种样品上分离的菌株不仅数量上有差别,种类上也存在一定的差异。其中,样品WC−33多样性最丰富,共分离得到7种不同属的放线菌。样品菌株WC−4虽然分离到了16株菌,但是其多样性不太丰富,仅为2个属,而样品WC−20和样品WC−24不仅得到的菌株数量少,而且种类也不丰富。另外,表2结果表明,不同海绵样品上放线菌种类的分布具有较大的差异,其中小单孢属Micromonospora在4种不同的海绵样品上均有分布,链霉菌属Streptomyces在3种不同的海绵样品上均有分布,而其他种属放线菌只在样品WC−33中分离得到,如栖白蚁菌属IsoptericolaKrasilnikoviella属、分枝杆菌属Mycobacterium、红球菌属Rhodococcus、糖多孢菌属Saccharopolyspora等均来源于WC−33号样品。

    放线菌种属
    Species of actinomycetes
    放线菌数量/株
    Number of actinomycetes
    海绵 WC−20海绵 WC−24海绵 WC−33海绵 WC−4
    Isoptericola sp - - 2 -
    Krasilnikoviella sp - - 7 -
    Micromonospora sp 5 1 1 11
    Mycobacterium sp - - 1 -
    Rhodococcus sp - - 2 -
    Saccharopolyspora sp - - 1 -
    Streptomyces sp - 2 12 5
    分离菌株数(种类)
    Strains (species)
    5(1) 3(2) 26(7) 16(2)

    Table 2.  Distribution of symbiotic actinomycetes on 4 sponge samples

  • 对50株海洋放线菌的发酵提取物进行抑菌活性分析,结果(表3)表明,24株海洋放线菌的发酵产物对4种指示细菌显示出不同程度的抑菌作用,占总菌数的48%。其中16株海洋放线菌显示出抗无乳链球菌活性,14株海洋放线菌显示出抗金黄色葡萄球菌活性,11株海洋放线菌显示出抗耐甲氧西林金黄色葡萄球菌活性,仅有2株海洋放线菌显示出抗大肠杆菌活性。此外,各海洋放线菌种属之间抗细菌活性比例呈现明显差异。除了MycobacteriumRhodococcus属海洋放线菌未发现抗细菌的菌株之外,其他5个属的海洋放线菌均含有抗细菌活性菌株,其中链霉菌属海洋放线菌的抗细菌活性比例为52.63%,Micromonospora属为33.33%,其他3个属(IsoptericolaKrasilnikoviellaSaccharopolyspora)的分离菌株数尽管较少,但活性菌株比例却相当高。

    分类
    Classification
    总菌数/株
    Total bacterial count
    抗细菌菌数/株
    Antibacterial strains
    抗真菌菌数/株
    Antifungal strains
    活性菌数(比例)/株
    Active strain
    C1C2C3C4Z1Z2Z3Z4Z5Z6细菌真菌
    Isoptericola 2 1 1 1 - 0 0 0 0 1 0 2(100%) 1(50%)
    Krasilnikoviella 7 0 2 3 4 0 0 0 0 0 0 5(71.43%) 0
    Micromonospora 18 0 3 3 5 1 0 0 0 1 1 6(33.33%) 1(5.56%)
    Mycobacterium 1 0 0 0 0 0 0 0 0 0 0 0 0
    Rhodococcus 2 0 0 0 0 0 0 0 0 0 0 0 0
    Saccharopolyspora 1 0 0 0 1 1 0 1 1 0 0 1(100%) 1(100%)
    Streptomyces 19 1 8 4 6 4 3 4 4 8 6 10(52.63%) 9(47.37%)
    总计(比例) 50 2(4%) 14(28%) 11(22%) 16(32%) 6(12%) 3(6%) 5(10%) 5(10%) 10(20%) 7(14%) 24(48%) 12(24%)
      注:C1:大肠杆菌,C2:金黄色葡萄球菌,C3:耐甲氧西林金黄色葡萄球菌,C4:无乳链球菌。Z1.香蕉枯萎病菌;Z2.芒果炭疽病菌;Z3.水稻稻瘟病菌;Z4.木薯根腐病菌;Z5.薯蓣炭疽病菌;Z6.橡胶炭疽病菌。
      Note: C1: Escherichia coli; C2: Staphylococcus aureus; C3: Methicillin-resistant Staphylococcus aureus; C4: Streptococcus agalactiae. Z1. Fusarium oxysporum;Z2.Colletotrichum asianum; Z3. Magnaporthe grisea; Z4. Lasiodiplodia theobromae; Z5.Colletotrichum gloeosporioides; Z6.Colletotrichum gloeosporioides.

    Table 3.  Distribution of antibacterial activity of marine actinomycetes

    12株海洋放线菌的发酵产物对6种指示丝状病原真菌显示出不同程度的抑菌作用,占总菌数的24%(表3)。其中20%的海洋放线菌对薯蓣炭疽病菌显示抑菌活性,14%的海洋放线菌对橡胶炭疽病菌显示抑菌活性,12%的海洋放线菌对香蕉枯萎病菌显示抑菌活性,10%的海洋放线菌对水稻稻瘟病菌和木薯根腐病菌显示抑菌活性,仅6%的海洋放线菌对芒果炭疽病菌显示抑菌活性。此外,各海洋放线菌种属之间抗真菌活性比例也呈现明显差异,其中MycobacteriumKrasilnikoviellaRhodococcus属海洋放线菌未发现抗真菌活性的菌株,而Isoptericola属海洋放线菌抗真菌活性比例最高,活性比例为50%,链霉菌属海洋放线菌的抗真菌活性比例次之,活性比例为47.37%;Micromonospora属海洋放线菌最少,活性比例仅为5.56%。

  • 海绵既是海洋天然产物的重要来源之一,也是海洋放线菌共附生的良好宿主。近10年来,海绵共附生放线菌资源一直是国内外研究的热点[11-16]。迄今共有63个属的放线菌在海绵中被发现,其中不少为新鉴定的放线菌新种[17-24]。这些新颖的海洋放线菌已成为海洋新天然产物研究的重要资源。例如,PIMENTEL-ELARDO等[21]从海绵共附生放线菌新种Saccharopolysporacebuensis中分离到2个新颖的大环内酰胺化合物Cebulactams A1 和 A2;YAN等[15]利用基因组挖掘技术从海绵共附生新种Micromonosporayangpuensis中分离到1个新颖的蒽醌烯二炔类化合物yangpumicin A,TAWFIKE等[23]添加N-乙酰氨基葡萄糖激活了海绵共附生放线菌新种Actinokineosporaspheciospongiae的沉默基因簇,获得了2个新的Fridamycins化合物。本研究采用纯培养的方式,从海南文昌东郊椰林海域采集的4种海绵中分离获得了50株海绵共附生放线菌,基于16S rRNA基因序列分析,分离菌株归属为6个科7个属的放线菌。其中常见的链霉菌属Streptomyces和小单孢菌属Micromonospora分离株数最多,不常见的糖多孢菌属Saccharopolyspora.;红球菌属Rhodococcus和分枝杆菌属MycobacteriumIsoptericola等放线菌属分离得菌株较少,这与前人的报道一致[10]。而Krasilnikoviella属的放线菌为首次从海绵中分离得到。此外,16S rRNA基因序列相似性比对发现,链霉菌HNM0574、红球菌HNM0569、小单孢菌HNM0616以及分枝杆菌HNM0591具有较低的相似性(≤98.7%),说明这些菌株是一类新颖的海绵共附生放线菌,值得进一步通过多相分类确定其种水平的分类地位。海绵共附生放线菌资源通常具有丰富的生物活性,包括抗菌、抗肿瘤以及抗寄生虫等,而抗菌活性表现尤为突出[24]。中国海洋大学朱伟明课题组对近40年来的海洋链霉菌天然产物进行了综述分析,在已报道的547个海洋链霉菌新天然产物中,海绵共附生链霉菌来源的新天然产物占了64个,其中1/5的化合物表现出抗菌活性[24]。本研究抗菌活性评价结果显示48%的分离菌株能产生抗细菌活性代谢产物,24%的分离菌株能产生抗植物丝状病原真菌活性代谢产物,预示这些海绵共附生放线菌菌株在医用和农用抗菌天然产物的挖掘上具有潜在的利用价值。

  • 本研究从海南文昌东郊椰林海域采集的4种海绵中分离到50株海洋放线菌,结合形态和16S rRNA基因序列分析,归属为5个亚目6个科7个属(Streptomyces,Micromonospora,RhodococcusSaccharopolysporaIsoptericolaKrasilnikoviellaMycobacterium),其中部分菌株如HNM0574,HNM0569,HNM0616以及HNM0591显示为潜在的新种。在抗菌活性评价中,48%的分离菌株呈现抗细菌活性,24%的分离菌株呈现抗植物丝状病原真菌活性,其中StreptomycesIsoptericolaicromonospora属海洋放线菌的抑菌活性较强;Streptomyces属海洋放线菌的抗细菌活性比例最高,而Isoptericola属海洋放线菌抗真菌活性比例最高。MycobacteriumRhodococcus属海洋放线菌没有显示出抑菌活性。这些活性菌株可作为后续海洋放线菌抗菌活性天然产物挖掘的重要菌源。

Reference (24)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return