Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Name
E-mail
Phone
Title
Content
Verification Code
Turn off MathJax
Article Contents

Xu Mengyang, LIU Yu, WANG Haibo, XU Wenxin, ZHANG Xiuli, FENG Shun, LI Maofu. Identification and expression analysis of the acetyl-CoA carboxylase gene family in Persea americana[J]. Journal of Tropical Biology. doi: 10.15886/j.cnki.rdswxb.20250037
Citation: Xu Mengyang, LIU Yu, WANG Haibo, XU Wenxin, ZHANG Xiuli, FENG Shun, LI Maofu. Identification and expression analysis of the acetyl-CoA carboxylase gene family in Persea americana[J]. Journal of Tropical Biology. doi: 10.15886/j.cnki.rdswxb.20250037

Identification and expression analysis of the acetyl-CoA carboxylase gene family in Persea americana

doi: 10.15886/j.cnki.rdswxb.20250037
  • Received Date: 2025-02-22
  • Accepted Date: 2025-04-01
  • Rev Recd Date: 2025-03-15
  • Avocado (Persea americana) is a fruit with high nutritional value, and fatty acids are among its key intrinsic nutrients. Acetyl-CoA carboxylase (ACC) is a crucial enzyme in fatty acid synthesis, essential for oil accumulation and storage. The protein structure, evolutionary relationships, and cis-acting elements of the PaACC gene promoter in avocado were analyzed by employing bioinformatics tools, and the expression levels of the PaACC genes across different avocado organs and developmental stages of the fruit were analyzed by using quantitative real-time polymerase chain reaction (qRT-PCR). A total of seven PaACC genes were identified in avocado, encoding three BC subunits, three BCCP subunits, and one α-CT subunit of ACC. The amino acid lengths of these genes range from 251 to 776, with an average molecular weight of 49.95 kDa. All the encoded proteins are hydrophilic and lack of transmembrane domains. Phylogenetic analysis of ACC proteins from various plant species reveals that ACC proteins are categorized into four subfamilies based on subunit composition. The gene structure shows that all the PaACC genes contain at least 5 exons, each member of which contains a certain number of introns. There are 25 different conserved motifs in the PaACC gene family. Specifically, PaACC1, PaACC2, and PaACC3 all have motif 14, while PaACC4, PaACC5, and PaACC6 all have motifs 1, 2, 3, 4, and 5. In the promoter region of the PaACC genes, several cis-acting elements associated with light response, hormone response, drought stress, and low-temperature stress were identified. These findings suggest that the PaACC genes play a significant role in regulating plant growth and development and may enhance the plant’s tolerance to abiotic stresses. Expression pattern analysis reveals that PaACC4, PaACC5, and PaACC7 exhibit significantly higher expression levels during the S5 stage of fruit development compared to other organs and stages. This study provides a theoretical foundation for further research on the role of the PaACC genes in avocado fatty acid biosynthesis.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article views(10) PDF downloads(0) Cited by()

Proportional views
Related

Identification and expression analysis of the acetyl-CoA carboxylase gene family in Persea americana

doi: 10.15886/j.cnki.rdswxb.20250037

Abstract: Avocado (Persea americana) is a fruit with high nutritional value, and fatty acids are among its key intrinsic nutrients. Acetyl-CoA carboxylase (ACC) is a crucial enzyme in fatty acid synthesis, essential for oil accumulation and storage. The protein structure, evolutionary relationships, and cis-acting elements of the PaACC gene promoter in avocado were analyzed by employing bioinformatics tools, and the expression levels of the PaACC genes across different avocado organs and developmental stages of the fruit were analyzed by using quantitative real-time polymerase chain reaction (qRT-PCR). A total of seven PaACC genes were identified in avocado, encoding three BC subunits, three BCCP subunits, and one α-CT subunit of ACC. The amino acid lengths of these genes range from 251 to 776, with an average molecular weight of 49.95 kDa. All the encoded proteins are hydrophilic and lack of transmembrane domains. Phylogenetic analysis of ACC proteins from various plant species reveals that ACC proteins are categorized into four subfamilies based on subunit composition. The gene structure shows that all the PaACC genes contain at least 5 exons, each member of which contains a certain number of introns. There are 25 different conserved motifs in the PaACC gene family. Specifically, PaACC1, PaACC2, and PaACC3 all have motif 14, while PaACC4, PaACC5, and PaACC6 all have motifs 1, 2, 3, 4, and 5. In the promoter region of the PaACC genes, several cis-acting elements associated with light response, hormone response, drought stress, and low-temperature stress were identified. These findings suggest that the PaACC genes play a significant role in regulating plant growth and development and may enhance the plant’s tolerance to abiotic stresses. Expression pattern analysis reveals that PaACC4, PaACC5, and PaACC7 exhibit significantly higher expression levels during the S5 stage of fruit development compared to other organs and stages. This study provides a theoretical foundation for further research on the role of the PaACC genes in avocado fatty acid biosynthesis.

Xu Mengyang, LIU Yu, WANG Haibo, XU Wenxin, ZHANG Xiuli, FENG Shun, LI Maofu. Identification and expression analysis of the acetyl-CoA carboxylase gene family in Persea americana[J]. Journal of Tropical Biology. doi: 10.15886/j.cnki.rdswxb.20250037
Citation: Xu Mengyang, LIU Yu, WANG Haibo, XU Wenxin, ZHANG Xiuli, FENG Shun, LI Maofu. Identification and expression analysis of the acetyl-CoA carboxylase gene family in Persea americana[J]. Journal of Tropical Biology. doi: 10.15886/j.cnki.rdswxb.20250037
  • 油梨(Persea americana )又名鳄梨、牛油果、樟梨、酪梨,是樟科(Lauraceae)鳄梨属(Persea)热带亚热带果树,也是木本油料树种[1]。据FAO数据统计显示,近十年来,世界油梨的种植面积和产量整体呈直线上升趋势,全球收获面积从2013年的49.41万hm2到2022年的88.40万hm2,增加了0.79倍,世界油梨总产量从2013年的453.78万t到2022年的897.83万t,增加了0.98倍。油梨营养价值极高,富含多种脂肪酸、维生素、蛋白质和矿质元素[2],其中脂肪酸主要为棕榈酸、棕榈油酸、油酸和亚油酸,油酸有助于降低心血管疾病风险,其含量随果实成熟度的增加及留树时间的延长而增加[3]。油梨中果皮在发育早期就开始积累脂质,在发育过程中油脂含量持续增加,而种子油脂含量低于中果皮且在各发育阶段波动较小,中果皮和种子的脂肪酸组成在发育过程中存在差异[4, 5]

    乙酰辅酶A羧化酶(Acetyl- coenzyme A carboxylase,ACC)在植物脂肪酸代谢中发挥着重要作用,其由生物素羧化酶亚基(Biotin carboxylase,BC)、生物素羧基载体蛋白亚基(Biotin carboxylase carrier protein,BCCP)、羧基转移酶(Carboxyl transferase,CT)的α-CT亚基和β-CT亚基组成[6],可催化乙酰辅酶A转化为丙二酰辅酶A,是脂肪酸合成的限速酶[7]。目前,已在拟南芥(Arabidopsis thaliana[8]、大豆(Glycine max[9]、油菜(Brassica napus[10]、油棕(Elaeis guineensis[11]、油桐(Vernicia fordii[12]、花生(Arachis hypogaea[13]、油茶(Camellia oleifera[14]、胡麻(Sesamum indicum[15]、亚麻(Linum usitatissimum[16]、棉花(Gossypium hirsutum[17]等多种植物中鉴定并克隆出ACC亚基编码的基因。此外,Pham等[18]发现酿酒酵母中ACC1的活性受到不同机制的调控,短链酰基辅酶A(如C14-C16)可以抑制ACC1活性,并影响其定位,而长链脂肪酸则可以通过反馈调节影响ACC1的活性。Gudenschwager等[19]鉴定出油梨的两个ACC亚基基因PamACCase-BCPamACCase-BCCP,发现在冷藏后的成熟果实中表达增加,推测这些基因可能与油梨冷藏诱导的生理失调有关。

    ‘哈斯’油梨是危地马拉与墨西哥杂交品种,具有厚皮和高含油量的特点,是我国主推品种之一[20]。关于油梨果肉中的乙酰辅酶A羧化酶在脂肪酸合成方面的功能尚未完全明晰,进一步挖掘ACC功能对解析脂肪酸合成途径具有重要的理论意义。本研究通过生物信息学方法,对PaACC基因家族理化性质、蛋白结构、进化关系、保守基序、启动子顺式作用元件等进行分析,同时也分析了不同组织器官以及果实不同发育时期的表达规律,以期为进一步研究PaACC基因在脂肪酸合成中的生物学功能提供理论依据。

    • 以农业农村部儋州油梨种质资源圃(19.505︒N, 109.483︒E)内的‘哈斯’油梨植株为采样株,于2023年谢花后30 d开始,每45 d,选取10个无病虫害、大小相似的健康果实,以果实质量大小作为分类标准,分为5个阶段,分别是S1(<30 g)、S2(30~<70 g)、S3(70~<110 g)、S4(110~<135 g)、S5(135~160 g),将每个阶段的果皮和种子去除,留果肉混合取样,并剪取植株的根、茎、叶放入液氮中速冻于超低温冰箱(−80 ℃)中保存备用。将采集的5个阶段的果肉样品送至武汉迈维代谢生物科技公司进行Illumina高通量转录组测序。

    • 参考已发表的油梨基因组[21],通过生物信息学方法,对转录组中的差异基因进行KEGG数据分析,最后得到PaACC基因序列。

      利用EXPASY(https://web.expasy.org/prot param/)对油梨ACC氨基酸序列进行理化特性分析[22]。利用Cell-PLoc 2.0(http://www.csbio.sjtu.edu.cn/bioinf/plant-multi/)在线工具预测PaACC基因的亚细胞定位情况[23]

    • 利用在线网站ExPasy-ProtScale(https://web.expasy.org/protscale/)预测PaACC蛋白亲疏水性,TMHMM Server v. 2.0网站(https://services.healthtech.dtu.dk/service.php)在线预测PaACC蛋白跨膜结构域[24]

    • 利用在线网站SOPMA(https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl?page=npsa%20_sopma.html)和SWISSMODEL(https://swissmodel.expasy.org/)对PaACC蛋白进行2级和3级结构预测[25]

    • 利用UniProt在线网站(https://www.uniprot.org/)获取拟南芥、番茄、大豆、油菜、油棕的ACC蛋白序列。利用MEGA11创建系统进化树(NJ法),使用Adobe Illustrator对系统发育树进行美化修饰。

    • 利用MEME(http://meme.sdsc.edumeme/cgi-bin/meme.cgi)在线软件对PaACC基因的保守基序(Motif)进行分析(Motif最大检索数量为25,其余参数均为默认)。利用GSDS(http://gsds.cbi.pku.edu.cn/)在线软件对PaACC基因结构进行分析[26]

    • 提取PaACC基因起始密码子上游2 000 bp序列作为启动子区域,将序列提交到PlantCARE(http://bioinformatics.psb.gent.e/eboolslantcare/html)在线软件,分析PaACC基因家族启动子区顺式作用元件[27]。利用TBtools(http:/www.tbtools.com/)软件进行绘图并美化[28]

    • 使用Primer Premier6设计引物(表1),内参基因PaActin参考已发表的基因引物[2],利用TIANGEN植物多糖多酚植物总RNA试剂盒(DP441)分别提取Hass油梨不同组织(根、茎、叶)以及5个阶段果肉的RNA。参照HiScript Ⅲ All-in-one RT SuperMix Perfect for qPCR说明书制备cDNA。参照ChamQ Universal SYBR qPCR Master Mix试剂说明,将cDNA稀释20倍,利用荧光定量仪对油梨不同组织器官、果肉发育不同时期表达水平进行检测。实验设置3个重复,采用2−ΔΔCT公式计算相对表达量[29]

      基因名
      Gene
      序列(5′-3′)
      Sequence(5′-3′)
      PaACC1_FTGAGGCATTGGTCCTAGAAGTGTG
      PaACC1_RACAGGTGGCGTTGGAGTAGTTG
      PaACC2_FGAGCCCAACTGAATGAGGTCTCC
      PaACC2_RGGTTCATTGGCATCCTTGTCTTCC
      PaACC3_FACGCCCACCACTGAAATGTCC
      PaACC3_RTTTCCATCCTCAGCAACCACCTC
      PaACC4_FGGATACCATGTGTTGCCGTTTACTC
      PaACC4_RATACGACTGACTACTTGGTGCTTCC
      PaACC5_FTCCCATTGTAGTCAAAGGCATCCC
      PaACC5_RTGGCAGACAGCAGCAGATAGAAC
      PaACC6_FGCTGCTGTCTGCCATGAATGC
      PaACC6_RACACGGATGCTATCTGGATTAGGTC
      PaACC7_FAAATGGCTGATGAAACTGGGCTTG
      PaACC7_RATGTCGGTCGGTTAGGATGTCTTG
      PaActin_FATACCTCTCTTGGACTGGGC
      PaActin_RCTCCACGGGCTGTGTTCC

      Table 1.  Primers for real-time PCR

    • 使用SPSS 27.0单因素ANOVA检验进行方差分析,GraphPad Prism 8进行绘图分析。

    • 通过生物信息学方法,在转录组差异基因中共鉴定出7个ACC家族成员,根据它们在染色体上的位置分布,依次命名为PaACC1PaACC7表2)。

      基因ID
      Gene ID
      基因名
      Gene
      氨基酸数
      Number of
      amino acids
      分子量/Da)
      Molecular
      weight /Da
      等电点
      pI
      不稳定指数
      Instability
      index
      脂族系数
      Aliphatic
      index
      亚细胞定位预测
      Predicting subcellular
      localization
      maker-Ctg0537-augustus-
      gene-2.13.mRNA1
      PaACC127729351.768.8734.9486.53叶绿体
      Chloroplast
      maker-Ctg0171-augustus-
      gene-2.8.mRNA1
      PaACC227730078.579.3767.1176.5叶绿体
      Chloroplast
      maker-Ctg0198-augustus-
      gene-1.9.mRNA1
      PaACC325126845.727.6373.5276.93叶绿体
      Chloroplast
      maker-Ctg1139-augustus-
      gene-0.7.mRNA1
      PaACC452757457.976.0235.5289.43线粒体
      Mitochondrion
      maker-Ctg0664-augustus-
      gene-2.11.mRNA1
      PaACC560266202.38.4237.2789.92线粒体
      Mitochondrion
      maker-Ctg5172-augustus-
      gene-0.3.mRNA1
      PaACC646852620.857.0539.5299.62叶绿体、线粒体
      Chloroplast、Mitochondrion
      augustus_masked-Ctg0156-
      processed-gene-6.3.mRNA1
      PaACC777687067.36.5537.1590.26线粒体、细胞核
      Mitochondrion、Nucleus

      Table 2.  Analysis of physicochemical properties of PaACC protein family in Persea americana

      理化性质分析结果表明,油梨PaACC的氨基酸数为251~776,其中PaACC7氨基酸数目最多,含有776个氨基酸;蛋白分子量为26.84~87.07 kDa,平均分子量为49.95 kDa;等电点为6.02~9.37,平均值为7.70;脂肪系数为76.5~99.62;不稳定指数为34.94~73.52,PaACC2和PaACC3为不稳定蛋白质,其余均小于40,为稳定蛋白。亚细胞定位预测PaACC4、PaACC5、PaACC6、PaACC7在线粒体,PaACC1、PaACC2、PaACC3和PaACC6在叶绿体中。

    • 对PaACC蛋白亲疏水性预测分析(图1),结果显示,PaACC1的平均亲水性为−0.094;PaACC2为−0.267;PaACC3为−0.219;PaACC4为−0.12;PaACC5为−0.149;PaACC6为−0.043;PaACC7为−0.511,基于预测结果,7个PaACC蛋白均属于亲水蛋白。

      Figure 1.  Analysis of the Hydrophilicity and Hydrophobicity of PaACC protein

      通过在线网站TMHMM对蛋白进行跨膜结构预测(图2),跨膜结构分析表明,7个PaACC蛋白均没有跨膜结构域,根据结果推测7个PaACC蛋白均为膜内蛋白。

      Figure 2.  Transmembrane structure prediction of PaACC protein

    • PaACC蛋白2级结构预测分析(表3),发现PaACC1、PaACC2、PaACC3蛋白中存在大量的无规则卷曲,少量的α-螺旋和延伸链,PaACC4、PaACC5和PaACC6蛋白中均含有34%以上的α-螺旋和无规则卷曲,15%左右的延伸链,7%左右β-折叠,PaACC7则含有较高的α-螺旋,其次为无规则卷曲、延伸链,β-折叠结构最少。对7个PaACC蛋白3级结构预测分析(图3),发现PaACC1和PaACC4蛋白的3级结构相近,PaACC2、PaACC5和PaACC6的蛋白3级结构较为相似,PaACC3和PaACC7蛋白结构相对复杂且紧密。

      蛋白名称
      Protein
      α-螺旋/%
      α-helix/%
      延伸链/%
      Extended strand/%
      β-折叠/%
      Beta-turn /%
      无规则卷曲/%
      Random coil /%
      PaACC115.5211.554.3368.59
      PaACC217.6915.525.0561.73
      PaACC314.3417.934.7862.95
      PaACC443.2614.426.8335.48
      PaACC539.8714.457.3138.37
      PaACC642.9515.386.8434.83
      PaACC778.873.740.5216.88

      Table 3.  Prediction of secondary structure of the PaACC proteins

      Figure 3.  Analysis of tertiary structure of PaACC proteins

    • 为了分析ACC蛋白之间的进化关系,基于油梨的7个、油菜的31个、拟南芥的20个、大豆的13个、油棕的9个和番茄的5个ACC蛋白的氨基酸序列构建了一个系统发育树(图4)。将PaACC分为4个亚族,分别为A、B、C、D。A亚族为编码BCCP亚基蛋白包含PaACC1、PaACC2、PaACC3,B亚族为编码β-CT亚基蛋白,PaACC7被分在C亚族为编码α-CT亚基蛋白,PaACC4、PaACC5、PaACC6被分在D亚族为编码BC亚基蛋白。油梨、油菜、拟南芥、大豆、油棕和番茄的ACC蛋白同时被分在A亚族。

      Figure 4.  Phylogenetic tree of ACC family members in Persea americana, Brassica napus, Arabidopsis thaliana, Glycine max, Elaeis guineensis, Solanum lycopersicum

    • PaACC基因家族成员基因结构进行预测分析,结果显示,PaACC都至少含有5个外显子,各成员都含有一定数量的内含子(图5-A)。PaACC共鉴定出25个motif(图5-B),PaACC1、PaACC2和PaACC3为BCCP亚基,均具有保守基序motif 14,PaACC4、PaACC5和PaACC6为BC亚基,均具有motif 1、2、3、4、5保守基序,PaACC7具有6个保守基序。故推测ACC家族可能因成员间保守基序的差异而导致功能存在差异。

      Figure 5.  Analysis of the gene structure and conserved motifs of PaACC gene

    • 通过对PaACC基因家族成员的启动子中的顺式作用元件分析,获得28类顺式作用元件(图6),各成员的基因启动子上存在30~48个顺式作用元件,以PaACC7基因数量最多,PaACC基因启动子区域中的顺式调控元件除了基本的TATA-box和CAAT-box之外,还有光响应元件,参与水杨酸、赤霉素、脱落酸、生长素等激素响应元件,参与干旱、低温等非生物胁迫响应元件,参与防御和应激反应的顺式作用元件,还有与玉米醇溶蛋白代谢调控、叶绿素细胞分化、细胞周期调控、种子特异性调控、胚乳表达、分生组织表达相关的元件等。

      Figure 6.  Distribution of cis-acting elements in the promoter of the PaACC gene

    • 通过qRT-PCR技术对油梨各器官和果实不同生长时期中的PaACC基因家族成员的表达模式进行分析(图7)。结果表明,7个PaACC基因在根、茎、叶、果实中均有表达,但在根、茎、叶中整体表达量均较低。PaACC4PaACC5PaACC7在果实S5时期表达量显著高于其他部位和时期,PaACC2PaACC3基因在不同生长时期的果实中整体表达量较低,PaACC2在油梨果实生长过程中呈现先增加后降低的趋势。

      Figure 7.  Expression analysis of the PaACC gene in different tissues and at different growth stages of fruits

    • 本研究利用生物信息学方法共鉴定出7个PaACC基因,在家族成员数量上相对于花生(28个)[30]、大豆(20个)[31]、椰子(21个)[32],油梨中的数量较少。PaACC亚细胞定位主要在线绿体和叶绿体中,与Wu等[31]结果相似,表明ACC在各种生物过程起到重要作用,以及参与线绿体和叶绿体中的某些物质的合成,因此该基因家族在能量代谢中也发挥重要作用。从系统进化上看,油梨、油菜、拟南芥、大豆、油棕和番茄中的ACC蛋白可分为4个亚族,其中7个PaACC分布在BCCP、α-CT、BC3个亚族中。来自油梨、油菜、拟南芥、大豆、油棕和番茄中的ACC成员都可以在A亚族中鉴定到,表明编码生物素羧化酶载体蛋白的基因在进化上有一定的保守性。油棕的ACC蛋白在A和D亚族中,分别和PaACC3、PaACC4/5聚在一起,表明单子叶植物和双子叶植物基因的进化在功能上保留了一定的保守性。PaACC4和PaACC5蛋白进化关系密切,具有13个相同的保守基序,推测其功能高度保守。聚类在同一亚族的PaACC蛋白的理化性质较为相似,不同类型的ACC含有的保守基序不同,PaACC1PaACC2PaACC3均具有保守基序motif 14,PaACC4PaACC5PaACC6均具有motif 1、2、3、4、5保守基序,推测这6个保守基序可能对油梨的正常生物功能具有重要作用。本研究发现PaACC基因启动子区域除含有核心启动子元件之外,还有光响应元件,表明这些基因受光照条件的影响,通过控制ACC活性进而影响光合作用和脂肪酸的合成,非生物胁迫响应元件和激素响应元件,表明这些基因受非生物胁迫的调节,与激素也有密切关系,除此之外,还发现含有种子特异性调控、胚乳表达等元件,表明这些基因在胚乳中表达,该结果与大豆中的分析结果相似[33]。基因表达模式是阐明基因功能的重要线索,本研究中分析发现7个PaACC基因在不同生长阶段以及不同器官中均有表达,PaACC2在油梨果实生长过程中呈现先增加后降低的趋势,PaACC4在果肉中的表达量高于其他器官,这与胡麻种子中的表达量研究结果相似[15],因此推测PaACC2、PaACC4在脂肪酸合成过程中发挥着重要作用。

      目前ACC基因促进油脂积累已在多个物种中得到验证,油茶乙酰辅酶A羧化酶4个亚基表达量对乙酰辅酶A羧化酶的活性以及种子含油量至关重要[14];在油菜中发现生物素羧基载体蛋白(BCCP)和羧基转移酶亚基(CT)的表达对油菜胚胎发育过程起着重要作用[34];亚麻中β-CT亚基基因通过异源表达,促进拟南芥种子脂肪酸合成相关基因的表达,从而促进拟南芥种子油脂的积累[16];WANG等研究发现过表达豌豆α-羧基转移酶的植株种子油含量明显提高[35];Zhou等发现脂肪酸合成调节因子RFS1与羧基转移酶互作因子CTI1共定位并直接相互作用,二者通过改变ACCase的质膜分布模式,降低膜上的ACCase活性,从而调控植物脂肪酸从头合成[36];在拟南芥中BADC蛋白作为ACCase负调控因子,通过RNA干扰BADC1基因沉默,导致T2代拟南芥种子的含油量显著增加[37]。这些发现为提高植物生产力和油脂产量提供了潜在的方法,也为油梨改良和油脂含量提高提供了理论支持。

    • 本研究在油梨中共鉴定出7个PaACC基因家族成员,氨基酸数为251~776个,均为亲水蛋白,PaACC家族成员分为4个亚族,PaACC1PaACC2PaACC3均具有保守基序motif 14,PaACC4PaACC5PaACC6均具有motif 1、2、3、4、5保守基序。在PaACC基因的启动子区域预测包含与激素响应有关的水杨酸、茉莉酸甲酯、赤霉素、生长素以及脱落酸响应,与环境响应有关的干旱、低温胁迫响应,与光响应相关的,还有与玉米醇溶蛋白代谢调控、种子特异性调控、细胞周期调控等相关的顺式作用调控元件。PaACC基因在各组织中均有表达,在果实不同生长阶段表达量存在差异。本研究结果为进一步研究PaACC基因在脂肪酸合成中的功能奠定基础。

Reference (37)
WeChat followshare

Top

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return