-
龙眼花是无患子科植物龙眼(Dimocarpus longan )的花。龙眼花性平,味微苦、甘;具有清热解毒,利水通淋,清心化浊的功效。主治淋证、白浊、白带、糖尿病,乳糜尿,血丝虫病等[1-2]。龙眼是我国南部和东南部著名果树之一,以广东最盛,广西、福建次之,云南、海南亦见野生或半野生于疏林中,亚洲南部和东南部也常有栽培。古代文献如《神农本草经》和《南方草木状》都有关于龙眼的记载,可见它的栽培历史悠久[3-4]。福建闽南地区龙眼资源丰富,龙眼花花序较大,多分支,一个正常的花序小花在500个左右,因此,龙眼的开花数量巨大。在农业上,为了提高龙眼果实的大小和质量,疏花是一项重要的工序,疏掉的花作为废弃品丢弃,造成资源的浪费[5]。现代研究表明,龙眼花中含丰富的营养成分,包括可溶性蛋白、可溶性糖、氨基酸、维生素、黄酮类、蒽醌类、鞣质、酚酸、甾醇、挥发油等物质[5-7],龙眼花挥发油中含有醇类、酯类、醛类、酮类等化合物,具有多种生物活性[4-5]。在福建泉州地区,民间有用龙眼花治疗诸种淋症、睾丸炎、白带异常、遗精等疾病的记载;在台湾地区,龙眼花干品作为商品在超市进行销售。近年来,花香的研究也日益受到关注[8-9],花香由小分子易挥发的化合物组成,通过提取、收集或者生物合成可以广泛地应用于日化、医疗、食品、化妆品等领域中[10]。从植物中提取的小分子易挥发性成分做成精油广泛应用于中医芳香疗法,辅助调节或诱导激素水平,改善心理疾病和生理指标,缓解或治疗相关疾病[11]。因此,龙眼花的开发利用价值很高,市场潜力大。梁洁等[12-13]对广西4个地区的龙眼花进行了挥发性成分的分析,发现广西不同产地龙眼花的挥发油中不仅组成成分的差异较大,而且同一成分的含量变化也较大。李程勋等[4]对福建福州产龙眼花的挥发油成分进行了分析,结果发现,成分及含量与广西龙眼花比较均有差异。通过查阅国内外相关文献发现,龙眼花的活性及物质基础研究很少,本研究主要对福建闽南地区产的龙眼花挥发油的化学成分进行分析,解析龙眼花的香气构成,同时,对龙眼花提取液的抗氧化活性进行研究,旨在为龙眼花优良品种的选育及开发利用提供科学依据。
-
采用GC-MS方法分析,得到龙眼花挥发性成分的总离子流图,共鉴定出59个化合物,占总挥发性成分含量的82.20%。其中,鉴定出烯烃类化合物40个占相对百分含量64.95%,萘类化合物5个占相对百分含量11.12%,烷烃类化合物5个占相对百分含量3.06%,脂肪酸4个占相对百分含量1.17%,同时分别含有醚、醛、醇、酮和酯类各1个。说明龙眼花挥发油中的主要成分是烯烃类化合物,其次是萘和烷烃类化合物(表1)。
编号
No.保留
时间 /min
Retention
time相对百
分含量/%
Relative
percentage化合物
Compound分子式
Molecular
formula相对
分子量
Relative
molecular
weight分子量
实测值
Measured
value1 27.10 0.27 橙花醚 Neroloxide C10H18O2 170 170.12 2 30.16 0.13 萜品烯 g-Terpinene C10H16 136 136.13 3 30.44 0.05 藏红花醛 1,3-Cyclohexadiene-1-carboxaldehyde, 2,6,6-trimethyl- C10H14O 150 150.10 4 33.75 0.08 3-蒈烯 3-Carene C10H16 136 136.13 5 36.30 0.48 茴香脑 Anethole C10H12O 148 148.09 6 39.56 0.17 4-乙烯基-4-甲基-3-(1-甲基乙烯基)-1-(1-甲基乙烯基)环己烯Cyclohexene, 4-ethenyl-4-methyl-3-(1-methylethenyl)-1-(1-methylethyl)-,(3R-trans)- C15H24 204 204.19 7 41.57 0.05 正癸酸 n-Decanoic acid C10H20O2 172 172.15 8 41.84 0.21 (+)-环苜蓿烯(+)-Cyclosativene C15H24 204 204.19 9 42.32 3.27 (-)-α-荜澄茄油烯(-)-Alpha-Cubebene C15H24 204 204.19 10 42.81 0.05 β-波旁烯(-)-beta-Bourbonene C15H24 204 204.19 11 43.15 1.55 β-榄香烯 beta-elemene C15H24 204 204.19 12 44.16 0.03 (-)-异丁香烯 isocaryophyllene C15H24 204 204.19 13 44.31 0.03 莎草烯 Cyperene C15H24 204 204.19 14 44.73 0.09 α-佛手甘油烯(E)-alpha-bergamotene C15H24 204 204.19 15 45.35 16.51 石竹烯Caryophyllene C15H24 204 204.19 16 45.69 2.11 1-乙烯基-1-甲基-2-(1-甲基乙烯基)-4-(1-甲基亚乙基)-, (1R,2R)g-Elemene C15H24 204 204.19 17 46.04 0.09 β-桉叶烯 beta-selinene C15H24 204 204.19 18 46.32 0.73 香橙烯 Aromandendrene C15H24 204 204.19 19 46.77 0.05 长叶烯 Longifolene C15H24 204 204.19 20 46.97 0.31 1,2,4a,5,6,8a-六氢-4,7-二甲基-1-(1-甲基乙基)萘 alpha-muurolene C15H24 204 204.19 21 47.10 0.58 β-马来烯 beta-maaliene C15H24 204 204.19 22 47.49 5.65 蛇麻烯Humulene C15H24 204 204.19 23 47.68 0.41 香树烯 Alloaromadendrene C15H24 204 204.19 24 48.42 11.98 γ-桉叶烯 gamma-selinene C15H24 204 204.19 25 48.52 1.27 γ-依兰烯 gamma-Muurolene C15H24 204 204.19 26 48.79 0.34 α-紫穗槐烯 alpha-amorphene C15H24 204 204.19 27 49.10 0.10 (-)-马兜铃烯(-)-Aristolene C15H24 204 204.19 28 49.28 0.32 (+)-δ-桉叶烯(+)-delta-selinene C15H24 204 204.19 29 49.64 0.41 (-)-α-依兰烯 alpha-Muurolene C15H24 204 204.19 30 49.93 3.72 α-桉叶烯 alpha-selinene C15H24 204 204.19 31 50.24 1.62 4,7-二甲基-1-丙烷-2-基-1,2,3,5,6,8-六氢萘 1-Isopropyl-4,7-dimethyl-1,2,3,5,6,8a-hexahydronaphthalene C15H24 204 204.19 32 50.50 0.33 (S)-1-甲基-4-(6-甲基庚-1,5-二烯-2-基)环己-1-烯beta-Bisabolene C15H24 204 204.19 33 50.90 1.27 (+)-γ- 杜松烯(+)-gamma-Cadinene C15H24 204 204.19 34 51.24 5.43 β-杜松烯 beta-Cadinene C15H24 204 204.19 35 51.65 0.24 (+)-β-桉叶烯(+)-beta -selinene C15H24 204 204.19 36 52.15 1.97 1,2,4a,5,8,8a-六氢-4,7-二甲基-1-(1-甲基乙基)-, (1R,4aS,8aR)-rel-萘Naphthalene, 1,2,4a,5,8,8a-hexahydro-4,7-dimethyl-1-(1-methylethyl)-, (1R,4aS,8aR)-rel- C15H24 204 204.19 37 52.80 6.60 (4aR,8aR)-2-异亚丙基-4a,8-二甲基- 1,2,3,4,4a,5,6,8a-八氢萘 Selina-3,7(11)-diene C15H24 204 204.19 38 53.79 3.55 (-)-α-古芸烯(-)-alpha -gurjunene C15H24 204 204.19 39 54.70 0.62 1,1,7,7a-四甲基-1a,2,6,7,7a,7b-六氢-1H-环丙并萘1,1,7,7a-Tetramethyl-1a,2,6,7,7a,7b-hexahydro-1H-cyclopropa[a]naphthalene C15H24 204 204.19 40 55.25 0.81 缬草-4,7(11)-二烯 Valerena-,7(11)-diene C15H24 204 204.19 41 55.63 0.09 γ-雪松烯 gamma-himachalene C15H24 204 204.19 42 55.85 0.23 γ-古芸烯 gamma-gurjunene C15H24 204 204.19 43 56.33 0.14 α-愈创木烯 alpha-Guaiene C15H24 204 204.19 44 56.45 0.25 β-愈创木烯 beta-Guaiene C15H24 204 204.19 45 56.62 0.33 雪松烯 Cedrene C15H24 204 204.19 46 57.97 0.58 Δ-杜松烯(+)-delta-cadinene C15H24 204 204.19 47 58.54 1.13 T-杜松醇 tau-Cadinol C15H26O 222 222.20 48 59.25 2.53 正二十烷 Eicosane C20H42 282 282.33 49 60.01 1.00 δ-桉叶烯delta-Selinene C15H24 204 204.19 50 61.78 0.07 香树烯aromadendrene C15H24 204 204.19 51 68.97 0.32 6,10,14-三甲基-2-十五烷酮 2-Pentadecanone, 6,10,14-trimethyl- C18H36O 268 268.28 52 74.55 0.40 邻苯二甲酸二丁酯 Dibutyl phthalate C16H22O4 278 278.15 53 75.15 1.00 棕榈酸 n-Hexadecanoic acid C16H32O2 256 256.24 54 81.49 0.14 二十六烷 Hexacosane C26H54 366 366.42 55 82.77 0.08 亚麻酸 Linoelaidic acid C18H32O2 280 280.24 56 83.24 0.04 油酸 Oleic Acid C18H34O2 282 282.26 57 90.21 0.04 正二十一烷 Heneicosane C21H44 296 296.34 58 97.41 0.11 二十四烷 Pentacosane C25H52 352 352.41 59 101.78 0.24 二十七烷 Heptacosane C27H56 380 380.44 Table 1. The retention time and relative percentage content of volatile components in longan flowers
-
通过查阅《化合物嗅觉阈值汇编》[14]检索这59个化合物的嗅觉阈值,共检索到9个香气化合物(表2)。通过计算香气化合物的OVA值,发现了4个关键香气化合物,3个潜在香气化合物和1个修饰性香气化合物。关键香气化合物分别为石竹烯、茴香脑、邻苯二甲酸二丁酯和正癸酸,其中,石竹烯的OAV值最大,且其香气类型为甜木质香味、丁香味,茴香脑的OVA值次之且具有八角茴香的气味,说明龙眼花的主要香气成分是石竹烯和茴香脑。潜在香气化合物为萜品烯、3-蒈烯和棕榈酸,修饰性香气化合物为二十四烷。
编号
No.化合物
Compound嗅觉阈值/(mg·m−3)
Olfactory threshold相对香气活度值OAV 香气类型
Aroma type1 萜品烯 g-Terpinene 1.4~1.6 0.08~0.09 潜在香气化合物
Potential aroma compound2 3-蒈烯 3-Carene 9.3 0.01 潜在香气化合物
Potential aroma compound3 茴香脑 Anethole 0.14 3.43 关键香气化合物
Key aroma compound4 正癸酸 n-Decanoic acid 0.05 1.00 关键香气化合物
Key aroma compound5 石竹烯Caryophyllene 1.5 11.01 关键香气化合物
Key aroma compound6 邻苯二甲酸二丁酯Dibutyl phthalate 0.26 1.54 关键香气化合物
Key aroma compound7 棕榈酸 n-Hexadecanoic acid >10 < 0.1 潜在香气化合物
Potential aroma compound8 油酸 Oleic Acid 44 — — 9 二十四烷 Heptacosane 1.0 0.11 修饰性香气化合物
Modifying aroma compoundTable 2. Olfactory threshold, relative aroma activity value and aroma type of longan flower aroma components
-
DPPH自由基清除实验结果显示,龙眼花不同溶剂提取液均有一定程度的抗氧化活性,尤其的在样品浓度较高时,抗氧化活性显著(图1~图2)。其中,甲醇提取液的DPPH自由基清除能力最强,IC50为0.021 g·L−1,其次是乙醇提取液和水提液,IC50分别为0.056 g·L−1和0.07 g·L−1,正丁醇和乙酸乙酯提取液的抗氧化活性较弱,IC50分别为0.415 g·L−1和0.947 g·L−1(表3)。
组别
GroupDF-WE DF-ME DF-EA DF-EAC DF-BE 阳性组
PositiveIC50 /(g·L−1) 0.070±0.009 0.021±0.003 0.056±0.002 0.947±0.067 0.415±0.019 0.011±0.001 Table 3. IC50 of DPPH free radical scavenging rate of different solvent extracts(n=3)
-
从图3~图4可知,龙眼花不同溶剂提取液对ABTS自由基均有一定程度的清除能力,尤其是水、甲醇和乙醇提取液的抗氧化效果显著。其中,水提取液的ABTS自由基清除能力最好,IC50为0.13 g·L−1,优于阳性对照组的IC50 值0.15 g·L−1,其次是甲醇和乙醇提取液IC50分别为0.17 g·L−1和0.21 g·L−1,正丁醇提取液的ABTS自由基清除能力也较明显,IC50为2.09 g·L−1,乙酸乙酯提取液的ABTS自由基清除能力不明显(表4)。
组别
GroupDF-WE DF-ME DF-EA DF-EAC DF-BE 阳性组
PositiveIC50 /(g·L−1) 0.13±0.005 0.17±0.003 0.21±0.002 48.83±0.005 2.09±0.001 0.15±0.001 Table 4. IC50 of ABTS free radical scavenging rate of different solvent extracts(n=3)
Volatile components and antioxidant activity of the extract of longan flowers from Fujian
doi: 10.15886/j.cnki.rdswxb.20240116
- Received Date: 2024-07-13
- Accepted Date: 2024-12-31
- Rev Recd Date: 2024-11-30
-
Key words:
- longan flower /
- essential oil /
- antioxidant /
- activity
Abstract: To explore the volatile components and aroma composition of the flowers of longan (Dimocarpus longan), and to investigate the antioxidant activity of their extracts, the flowers of longan were collected from Fujian and extracted with different solvents, and their volatile components and the aroma of the components were analyzed by using the GC-MS technology. Meanwhile, DPPH and ABTS free radical scavenging assays were used to detect the antioxidant activity of the longan flower extracts. The results showed that 59 components were identified from the essential oil extracted from the longan flowers, accounting for approximately 82.2% of the total volatile components. In the essential oil 4 key aroma compounds, 3 potential aroma compounds and 1 modified aroma compound were found. The DPPH and ABTS free radical scavenging assay showed that different solvent extracts of longan flowers had a certain degree of antioxidant activity. Water extract, methanol extract and ethanol extract had significant antioxidant activity, while n-butyl alcohol extract and ethyl acetate extract had low antioxidant activity. All the results show that longan flowers have a great development potential in the fields of medicine, cosmetics, health products, functional foods and so on, which provides a scientific basis for the development and utilization of longan flowers.
Citation: | LIN Shuihua, HUANG Xiaoyi, YANG Binjun, ZHANG Lingling, LI Sihong, HUANG Youxia. Volatile components and antioxidant activity of the extract of longan flowers from Fujian[J]. Journal of Tropical Biology. doi: 10.15886/j.cnki.rdswxb.20240116 |