Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Name
E-mail
Phone
Title
Content
Verification Code
Volume 15 Issue 3
May  2024
Turn off MathJax
Article Contents

QIAN Changing, WU Wentao, CHEN Jian, SONG Xiqiang, ZHAO Ying. Analysis of the chemical composition of the essential oils from floral buds and leaves of Michelia shiluensis and their inhibitory activity against α-glucosidase[J]. Journal of Tropical Biology, 2024, 15(3): 290-298. doi: 10.15886/j.cnki.rdswxb.20220110
Citation: QIAN Changing, WU Wentao, CHEN Jian, SONG Xiqiang, ZHAO Ying. Analysis of the chemical composition of the essential oils from floral buds and leaves of Michelia shiluensis and their inhibitory activity against α-glucosidase[J]. Journal of Tropical Biology, 2024, 15(3): 290-298. doi: 10.15886/j.cnki.rdswxb.20220110

Analysis of the chemical composition of the essential oils from floral buds and leaves of Michelia shiluensis and their inhibitory activity against α-glucosidase

doi: 10.15886/j.cnki.rdswxb.20220110
  • Received Date: 2022-12-10
  • Rev Recd Date: 2023-05-10
  • Publish Date: 2024-05-25
  • Essential oil was extracted from floral buds and leaves of Michelia shiluensis (M. shiluensis) by steam distillation. After treatment, the components of the essential oil were determined by gas chromatography-mass spectrometry (GC-MS). The GC-MS analysis showed that the main components of the two essential oils were sesquiterpenes. A total of 39 chemical components were identified from the essential oil of floral buds, of which three, β-bisabolene, α-curcumene and β-elemene, were the highest in relative content. A total of 31 chemical constituents were identified from the essential oil of leaves, including guaiacol, isoguaiacol, (Z, Z, Z) -1,8,11,14-heptadecatetraene, and so on. The relative content of alc cohols and olefins is an important index to distinguish between the essential oils of the floral buds and the leaves. The components of M. shiluensis essential oil were analyzed for the first time, and the inhibitory activity of M. shiluensis essential oil on α-glucosidase was determined. When the mass concentration was 3 g·L-1, the essential oils of the leaves and floral buds had an inhibition rate of 87.13% and 72.27% against α-glucosidase activity, and their IC50 was 0.73 ± 0.04 g·L-1 and 1.77 ± 0.07 g·L-1, respectively. M. shiluensis essential oil has a strong inhibitory effect on α-glucosidase activity, and can be developed and used as a hypoglycemic efficacy factor, which provides a theoretical basis for value-added utilization of M. shiluensis resources.
  • [1] 孙晶, 魏静, 杨洋, 等. 茄皮提取物对糖尿病小鼠的降血糖作用 [J]. 现代食品科技, 2022, 38(9): 10-17.
    [2] 李文娟, 吴伟, 万敏, 等. 木姜叶柯降血糖作用研究进展 [J]. 现代食品科技, 2022, 38(4): 292-297.
    [3] 杨玉洁, 刘静宜, 谭艳, 等. 多糖降血糖活性构效关系及作用机制研究进展 [J]. 食品科学, 2021, 42(23): 355-363.
    [4] 石嘉怿, 张冉, 梁富强, 等. 谷物植物化学物中α-葡萄糖苷酶抑制剂的筛选及其分子机制 [J]. 食品科学, 2021, 42(5): 9-16.
    [5] 郅丽超, 张琳依, 梁馨元, 等. 天然活性成分对α-葡萄糖苷酶抑制作用的研究进展 [J]. 食品安全质量检测学报, 2021, 12(6): 2276-2282.
    [6] AJMAL SHAH M, KHALIL R, UL-HAQ Z, et al. α-Glucosidase inhibitory effect of rhinacanthins-rich extract from Rhinacanthus nasutus leaf and synergistic effect in combination with acarbose [J]. Journal of Functional Foods, 2017, 36: 325-331.
    [7] 李潮俊, 何鑫柱, 陈凯, 等. 花椒挥发油的生物活性及提取方法研究进展 [J]. 农产品加工, 2022(17): 102-106.
    [8] 于永福. 中国野生植物保护工作的里程碑: 《国家重点保护野生植物名录(第一批)》出台 [J]. 植物杂志, 1999(5): 3.
    [9] XIONG J, WANG L J, QIAN J, et al. Structurally diverse sesquiterpenoids from the endangered ornamental plant Michelia shiluensis [J]. Journal of Natural Products, 2018, 81(10): 2195-2204.
    [10] LIN T K, ZHONG L, SANTIAGO J L. Anti-inflammatory and skin barrier repair effects of topical application of some plant oils [J]. International Journal of Molecular Sciences, 2017, 19(1): 70.
    [11] 张玉龙, 张伟, 敬思群, 等. 油茶树嫩枝精油抗氧化性及抑菌性研究 [J]. 食品工业, 2021, 42(10): 197-201.
    [12] SONGSAMOE S, MATAN N, MATAN N. Antifungal activity of Michelia alba oil in the vapor phase and the synergistic effect of major essential oil components against Aspergillus flavus on brown rice [J]. Food Control, 2017, 77: 150-157.
    [13] WU C C, WU C L, HUANG S L, et al. Antifungal activity of Liriodenine from Michelia formosana heartwood against wood-rotting fungi [J]. Wood Science and Technology, 2012, 46(4): 737-747.
    [14] LEI L H, HOU J, LIU H Y, et al. Hypolipidemic and antioxidant activities of volatile oils from fresh leaves of Michelia martini Levl [J]. Pakistan Journal of Pharmaceutical Sciences, 2019, 32(1): 383-389.
    [15] 魏亚情, 宋希强, 赵莹, 等. 吊罗山石碌含笑群落木本植物种间联结性研究 [J]. 热带作物学报, 2022, 43(12): 2606-2613.
    [16] 魏亚情, 洪峰, 袁浪兴, 等. 海南特有濒危植物石碌含笑的分布现状与种群年龄结构特征 [J]. 热带作物学报, 2017, 38(12): 2280-2284.
    [17] 段玉书, 胡永, 杨万霞, 等. 黔产青钱柳化学成分及α-葡萄糖苷酶抑制活性研究 [J]. 天然产物研究与开发, 2019, 31(6): 940-945.
    [18] 杨婧, 赵鹏, 刘冬, 等. β-榄香烯对肺癌小鼠模型肿瘤生长及组织IGFBP1和VEGF表达的影响 [J]. 临床和实验医学杂志, 2021, 20(23): 2465-2468.
    [19] ZHAI B, ZENG Y, ZENG Z, et al. Drug delivery systems for elemene, its main active ingredient β-elemene, and its derivatives in cancer therapy [J]. International Journal of Nanomedicine, 2018, 13: 6279-6296.
    [20] 王丽媛, 周宁, 宁月宝. 固态发酵黑姜挥发性物质的GC-MS测定 [J]. 中国调味品, 2022, 47(7): 177-181.
    [21] ZHANG Y L, LUO J G, WAN C X, et al. Four new flavonoids with α-glucosidase inhibitory activities fromMorus albavar.tatarica [J]. Chemistry & Biodiversity, 2015, 12(11): 1768-1776.
    [22] 王云云, 侯文成, 魏建和, 等. 沉香中倍半萜类化合物与生物活性研究进展及其质量标志物预测分析 [J]. 中草药, 2022, 53(4): 1191-1209.
    [23] 王艺萌, 王知斌, 孙延平, 等. 苍术属植物中倍半萜类化合物化学结构和生物活性研究进展 [J]. 中草药, 2021, 52(1): 299-309.
    [24] 曹亚娟. 扶正祛邪方及其有效组分愈创醇通过抑制M2型巨噬细胞阻抑肺癌上皮间质转化的分子机制研究 [D]. 上海: 上海中医药大学, 2019.
    [25] ADEFEGHA S A, OLASEHINDE T A, OBOH G. Essential oil composition, antioxidant, antidiabetic and antihypertensive properties of two Afromomum species [J]. Journal of Oleo Science, 2017, 66(1): 51-63.
    [26] 廖天柱. 六种含笑属植物提取物的多酚成分及生物活性研究 [D]. 长沙: 中南林业科技大学, 2022.
    [27] VENKATADRI B, KHUSRO A, AARTI C, et al. In vitro assessment on medicinal properties and chemical composition of Michelia nilagirica bark [J]. Asian Pacific Journal of Tropical Biomedicine, 2017, 7(9): 782-790.
    [28] 谭青云, 袁永俊, 王丹, 等. 不同提取方式对铁皮石斛多糖及体外降血糖的影响 [J]. 食品科技, 2019, 44(6): 202-206.
    [29] 李琳, 连树林, 楚云杰, 等. β-榄香烯对非小细胞肺癌A549细胞凋亡及氧化应激的影响 [J]. 肿瘤, 2020, 40(9): 625-632.
    [30] 麻杰, 陈娟, 赵冰洁, 等. 抗癌药物β-榄香烯及其衍生物的研究进展 [J]. 中草药, 2018, 49(5): 1184-1191.
    [31] ZHANG Y, WANG J, QU Y, et al. 6-shogaol suppresses the progression of liver cancer via the inactivation of Wnt/β-catenin signaling by regulating TLR4 [J]. The American Journal of Chinese Medicine, 2021, 49(8): 2033-2048.
    [32] 郑怀舟, 汪滢, 黄儒珠. 含笑叶、花挥发油成分的GC-MS分析 [J]. 福建林业科技, 2011, 38(1): 53-56.
    [33] 雷凌华, 朱强根, 夏更寿, 等. 黄心夜合不同组织挥发油成分分析 [J]. 浙江农林大学学报, 2019, 36(1): 193-199.
    [34] 典灵辉, 龚先玲, 蔡春, 等. 含笑化学成分分析 [J]. 中国医院药学杂志, 2006, 26(10): 1250-1251.
    [35] 马惠芬, 司马永康, 郝佳波, 等. 3种含笑属植物叶片挥发油化学成分的比较研究 [J]. 西部林业科学, 2012, 41(2): 77-81.
    [36] ASAKURA K, MATSUO Y, OSHIMA T, et al. ω-Agatoxin IVA-sensitive Ca2+ channel blocker, α-eudesmol, protects against brain injury after focal ischemia in rats [J]. European Journal of Pharmacology, 2000, 394(1): 57-65.
    [37] MA E L, LI Y C, TSUNEKI H, et al. β-Eudesmol suppresses tumour growth through inhibition of tumour neovascularisation and tumour cell proliferation [J]. Journal of Asian Natural Products Research, 2008, 10(2): 159-167.
    [38] ZHENG Y F, REN F, LIU X M, et al. Comparative analysis of essential oil composition from flower and leaf of Magnolia kWangsiensis Figlar & Noot [J]. Natural Product Research, 2016, 30(13): 1552-1556.
    [39] 张露, 刘鹏飞, 涂宗财, 等. 香榧不同部位提取物的抗氧化和酶抑制活性比较分析 [J]. 食品科学, 2018, 39(10): 78-83.
    [40] MAHDAVI A, BAGHERNIYA M, MIRENAYAT M S, et al. Medicinal plants and phytochemicals regulating insulin resistance and glucose homeostasis in type 2 diabetic patients: a clinical review [J]. Advances in Experimental Medicine and Biology, 2021, 1308: 161-183.
    [41] 张俊焱, 李成慧, 左文明, 等. 金露梅中一种α-葡萄糖苷酶抑制剂的提取富集及活性研究 [J]. 天然产物研究与开发, 2023, 35(3): 460-466.
    [42] LEE Y. Cytotoxicity evaluation of essential oil and its component from Zingiber officinale roscoe [J]. Toxicological Research, 2016, 32(3): 225-230.
    [43] 汪洪武, 刘艳清, 鲁湘鄂, 等. 不同方法提取含笑茎、叶和花挥发油化学成分的GC-MS分析 [J]. 精细化工, 2007, 24(5): 477-479.
    [44] BOMFIM D S, FERRAZ R P C, CARVALHO N C, et al. Eudesmol isomers induce caspase-mediated apoptosis in human hepatocellular carcinoma HepG2 cells [J]. Basic & Clinical Pharmacology & Toxicology, 2013, 113(5): 300-306.
    [45] 祁悦, 梅文莉, 王雅丽, 等. 喙花姜块茎和根中挥发油成分分析及其α-葡萄糖苷酶抑制活性 [J]. 食品研究与开发, 2022, 43(8): 160-166.
    [46] 陆廷亚, 陈琪, 赵晓歌, 等. 大高良姜地下根茎挥发油化学成分及体外药理活性研究 [J]. 天然产物研究与开发, 2020, 32(11): 1866-1875.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(3)  / Tables(2)

Article views(76) PDF downloads(4) Cited by()

Proportional views
Related

Analysis of the chemical composition of the essential oils from floral buds and leaves of Michelia shiluensis and their inhibitory activity against α-glucosidase

doi: 10.15886/j.cnki.rdswxb.20220110

Abstract: Essential oil was extracted from floral buds and leaves of Michelia shiluensis (M. shiluensis) by steam distillation. After treatment, the components of the essential oil were determined by gas chromatography-mass spectrometry (GC-MS). The GC-MS analysis showed that the main components of the two essential oils were sesquiterpenes. A total of 39 chemical components were identified from the essential oil of floral buds, of which three, β-bisabolene, α-curcumene and β-elemene, were the highest in relative content. A total of 31 chemical constituents were identified from the essential oil of leaves, including guaiacol, isoguaiacol, (Z, Z, Z) -1,8,11,14-heptadecatetraene, and so on. The relative content of alc cohols and olefins is an important index to distinguish between the essential oils of the floral buds and the leaves. The components of M. shiluensis essential oil were analyzed for the first time, and the inhibitory activity of M. shiluensis essential oil on α-glucosidase was determined. When the mass concentration was 3 g·L-1, the essential oils of the leaves and floral buds had an inhibition rate of 87.13% and 72.27% against α-glucosidase activity, and their IC50 was 0.73 ± 0.04 g·L-1 and 1.77 ± 0.07 g·L-1, respectively. M. shiluensis essential oil has a strong inhibitory effect on α-glucosidase activity, and can be developed and used as a hypoglycemic efficacy factor, which provides a theoretical basis for value-added utilization of M. shiluensis resources.

QIAN Changing, WU Wentao, CHEN Jian, SONG Xiqiang, ZHAO Ying. Analysis of the chemical composition of the essential oils from floral buds and leaves of Michelia shiluensis and their inhibitory activity against α-glucosidase[J]. Journal of Tropical Biology, 2024, 15(3): 290-298. doi: 10.15886/j.cnki.rdswxb.20220110
Citation: QIAN Changing, WU Wentao, CHEN Jian, SONG Xiqiang, ZHAO Ying. Analysis of the chemical composition of the essential oils from floral buds and leaves of Michelia shiluensis and their inhibitory activity against α-glucosidase[J]. Journal of Tropical Biology, 2024, 15(3): 290-298. doi: 10.15886/j.cnki.rdswxb.20220110
  • 主持人:徐 冉

    糖尿病是由胰岛素分泌缺陷或胰岛素作用障碍引起的高血糖为特征的代谢性疾病,是三大慢性疾病之一[1]。我国的糖尿病患者人数居世界首位,其中Ⅱ型糖尿病是糖尿病的主要类型,人数约占总患者的90%[2-4]α-葡萄糖苷酶可以抑制糖苷酶活性和延缓餐后血糖浓度的上升,在治疗Ⅱ型糖尿病中具有显著优势[5]。目前临床应用的α-葡萄糖苷酶抑制剂药物如阿卡波糖、伏格列波糖等,其对人体肠道和肝脏均具有副作用[6]。因此,开发安全价廉的天然辅助降血糖物质具有重要意义。常用的挥发油提取方法主要有水蒸气蒸馏法、溶剂浸取法、超临界CO2萃取法等[7]。超临界CO2萃取法出油率高,设备昂贵,且成本较高;有机溶剂浸提法操作简单,但耗时长,挥发油品质不高,易有溶剂或杂质存留;而水蒸气蒸馏法成本低,操作简便,无污染,且脂溶性组分损失少,适合规模生产。石碌含笑(Michelia shiluensis, M. shiluensis)属木兰科(Magnoliaceae)含笑属(Michelia Linn)植物,也是海南特有树种和国家Ⅱ级濒危保护植物[8-9],主要分布于海南省的中部以及南部的山区,其他地区也有少量分布,是热带和亚热带地区极具发展前景的珍贵树种。精油是植物衍生的产品,通常由数十至数百种挥发性化合物组成,富含许多重要的活性成分,已经应用于化妆品、食品、医药以及生物科技等领域[10-11]。木兰科含笑属植物的精油多具有芳香气味且具有抗氧化、抑菌等生物活性,如白兰(Michelia alba)和台湾含笑(Michelia compressa)精油的抗真菌活性[12-13]。黄心夜合(Michelia martini)多个部位中的挥发油在体外和体内实验中都表现出较强的抗氧化和降血脂的活性[14]。目前,有关石碌含笑的研究主要集中在繁育栽培、种群结构等,而关于石碌含笑精油与其相关活性的研究尚未见有报道[15-16],故选用石碌含笑栽培种的花苞和叶片作为原料,用水蒸气蒸馏法提取精油,通过GC-MS分析精油中的挥发性成分,并探讨精油对α-葡萄糖苷酶的抑制作用,为石碌含笑资源高值化利用提供新思路,同时也为其在降血糖功能的深入研究提供理论依据。

  • 2021年4月于海南省海口市采集长势良好,树龄超10年的石碌含笑花蕾期的新鲜花苞和叶片。该植株花期为4月下旬至5月下旬,花蕾期为4月上旬至中旬。乙醚(分析纯):四川西陇科学有限公司;二甲基亚砜(DMSO):天津富宇精细化工有限公司;磷酸氢二钠:西陇科学股份有限公司;磷酸二氢钠:西陇科学股份有限公司;α-葡萄糖苷酶、对硝基苯基-α-D-吡喃葡萄糖苷(PNPG):Sigma Chemical。

  • 气相色谱-质谱联用仪(7820-5977):安捷伦公司,美国;全波长多功能酶标仪(Synergy H1):Bio-Tek,美国;电子秤(EN2062):上海民侨精密科学仪器有限公司;电热套(98-1B):天津泰斯特仪器有限公司。

  • 将石碌含笑新鲜的花苞和叶片分别进行剪碎处理,将280.5 g花苞和 589.5 g叶片分别放进圆底烧瓶中加入蒸馏水浸没进行水蒸气蒸馏提取,煮沸后连续提取8 h直至精油不再增加后转移出上层精油部分,利用乙醚萃取,V乙醚V精油=1∶1,萃取3次,放置样品至其中的乙醚完全挥发后,称取精油质量,获得花苞精油0.30 g,叶片精油0.28 g,提取率分别为0.11%和0.05%。将精油密封避光,置于冰箱4 ℃保存。

  • 气相色谱条件:采用HP-5MS 5% Phenyl Methyl Siloxane(30 m×0.25 mm×0.25 μm)弹性石英毛细管柱;升温程序:柱温50 ℃,以5 ℃·min-1升温至310 ℃,保持10 min;汽化室温度为250 ℃;载气为高纯He(99.999%);柱前压43 kPa,载气(He)流速1.0 mL·min-1;进样量1.0 μL, 进样方式采用不分流进样,溶剂延迟时间为4 min。

    质谱条件:电子轰击(EI)离子源,电子能量70 eV,接口温度280 ℃,离子源温度230 ℃,四级杆温度150 ℃,调谐方式为标准调谐,电子倍增电压1 718 kV,质量扫描范围为40~800 m/z。

  • 采用PNPG法对两个部位精油进行α-葡萄糖苷酶抑制活性测定[17]。配制0.1 mol·L-1, pH6.8磷酸盐缓冲溶液(PBS);利用PBS溶解α-葡萄糖苷酶配制0.2 U·mL-1α-葡萄糖苷酶溶液;配制2.5 mmol·L-1的PNPG溶液;DMSO溶解配制1.5 mmol·L-1金雀异黄酮溶液作为阳性对照,溶解样品配制初始浓度为3 g·L-1。取450 μL α-葡萄糖苷酶溶液与45 μL待测样品溶液混合摇匀,空白对照和本底对照也是加入45 μL待测样品溶液(3次重复),阴性对照为45 μL DMSO溶液,阳性对照为45 μL金雀异黄酮溶液,在96孔板反应15 min后,空白和本底对照中加入40 μL PBS溶液,阴性对照、阳性对照以及其余待测样品溶液中加入40 μL PNPG溶液,反应15 min后在405 nm波长下测定每孔的吸光度(OD)。计算公式如下:

    式中,OD:阴性对照吸光度值; OD本底:本底的吸光度值;OD:待测样品的吸光度值; OD: 空白对照吸光度值。

  • 所有试验重复进行3次,采用SPSS 26.0软件进行单因素分析(One-way ANOVA)和邓肯检验(Duncan’s test)并进行均值比较(P< 0.05),结果以均值±标准偏差来表示,采用Excel 2022软件对分析后的试验数据进行处理并作图。

  • 按上述GC-MS条件对花苞和叶片的精油的化学成分进行分析,得到花苞和叶片的精油的总离子流色谱图(图1),用峰面积归一化法计算所鉴定化合物的相对百分含量, 两个部位成分种类及含量分析结果见表1图1表明,在保留时间0~25 min内的离子流和峰面积差异不明显,在保留时间25 ~40 min 内,花苞挥发油的离子流强度和峰面积均较大。花苞和叶片的挥发油的峰最高强度和峰面积最大值均出现在保留时间20 min左右,其化学成分分别为β-红没药烯和愈创木醇。保留时间在15~28 min的化合物主要为倍半萜类成分。从两种挥发油中鉴定出的化合物的总相对含量分别达到99.99%和100%,较为充分地实现分析两种挥发油的目的。

    Figure 1.  GC-MS total ion flow diagram of the essential oil of M. shiluensis (A) Flower bud essential oil (B) Leaf essential oil

    编号No.化合物名称 Compound name分子式Molecular formula保留时间/minRetention time/min相对含量/%Relative content/%
    花苞Flower bud叶片Leaf花苞Flower bud叶片Leaf
    1δ-Elemene δ-榄香烯C15H2416.432-0.65-
    2β-Elemene β-榄香烯C15H2417.88715.0329.71.98
    3(-)-α-Santalene (-)-α-檀香烯C15H2418.557-2.12-
    4γ-Elemene γ-榄香烯C15H2418.89616.0351.350.83
    5Trans-β-bergamotene 反式-β-波旁烯C15H2418.943-2.98-
    6Guaia-6,9-diene 6,9-愈创二木烯C15H2419.151-0.58-
    7(-)-Isoledene (-)-异喇叭烯C15H2419.299-0.8-
    8(E)-β-Famesene (Z)-β-金合欢烯C15H2419.43-2.07-
    9(+)-Aromandendrene (+)-香橙烯C15H2419.62-3.06-
    10γ-Cadinene γ-杜松烯C15H2419.982-1.38-
    11α-Curcumene α-姜黄烯C15H2420.1317.25710.272.02
    12(Z)-β-Farnesene (Z)-β-金合欢烯C15H2420.189-3.48-
    13Zingiberene α-姜油烯C15H2420.40917.6022.862.84
    14β-Maaliene β-马榄烯C15H2420.58717.7083.412.52
    15β-Bisabolene β-红没药烯C15H2420.77117.89810.642.7
    16Butylated hydroxytoluene 2,6-二叔丁基对甲酚C15H24O20.83617.9520.720.44
    17β-Sesquiphellandrene β-倍半水芹烯C15H2421.10418.2253.221.67
    18Elemol 榄香醇C15H26O21.70318.8240.944.4
    19Spatulenol 桉油烯醇C15H24O22.40319.4361.371.71
    20Guaiol 愈创木醇C15H26O22.87820.1125.4825.22
    21Eremophila-9,11(13)-dien-12-ol 艾里莫芬-9,11(13)-二烯-12醇C15H24O23.05-0.98-
    22Zingiberenol 姜醇C15H26O23.18121.9342.630.44
    23γ-Eudesmol γ-桉叶油醇C15H26O23.38320.7060.73.12
    24(-)-Globulol (-)-蓝桉醇C15H26O23.51319.5783.591.56
    2523.733-0.65-
    26Guaiol acetate 愈创木酚乙酸酯C17H28O223.798-1-
    27Aristolen 马兜铃烯C15H2423.935-1.39-
    28β-Eudesmol β-桉叶醇C15H26O24.08321.1092.083.8
    29α-Eudesmol α-桉叶醇C15H26O24.1321.1813.52.79
    30Caryophyllene oxide 氧化石竹烯C15H24O24.32625.652.40.39
    31Bulnesol 异愈创木醇C15H26O24.43924.439311.76
    32Trans-longipinocarveol 反式长叶香芹醇C15H24O25.015-0.9-
    336-Isopropenyl-4,8a-dimethyl-1,2,3,5,6,7,8,8a-octahydro-naphthalen-2-ol6-异丙烯基-4,8a-二甲基-1,2,3,5,6,7,8,8a-八氢萘-2-醇C15H24O25.318-0.89-
    343-Isopropyl-6,7-dimethyltricyclo[4.4.0.0(2,8)]decane-9,10-diol3-异丙基-6,7-二甲基三环[4.4.0.0 (2,8)]癸烷-9,10-二醇C15H26O225.632-0.81-
    354-(2,2,6-Trimethyl-7-oxabicyclo[4.1.0]hept-4-en-1-yl)pent-3-en-2-one4-[2,2,6-三甲基-7-氧杂二环[4.1.0]庚-1-基]-3-丁烯-2-酮C14H20O225.864-1.01-
    36Valerenal 缬草烯醛C15H22O26.232-0.53-
    37Isoaromadendrene epoxide 异香橙烯环氧化物C15H24O27.033-0.63-
    381,7-Dimethyl-4-(1-methylethyl)-Spiro[4.5]dec-6-en-8-one1,7-二甲基-4-(1-甲基乙基) -螺[4.5]癸-6-烯-8-酮C15H24O28.612-0.63-
    39(Z,Z,Z)-1,8,11,14-Heptadecatetraene (Z,Z,Z)-1,8,11,14-十七碳四烯C17H2828.7325.8935.5913.54
    40Bicycloelemene 双环榄香烯C15H24-13.631-0.89
    41Caryophyllene 石竹烯C15H24-15.649-0.9
    42Alloaromadendrene 香树烯C15H24-16.652-0.68
    43γ-Muurolene γ-衣兰油烯C15H24-17.05-0.38
    44Germacrene-D 大牛儿烯-DC15H24-17.151-1.45
    45Bicyclogermacrene 双环-大根老鹳草烯C15H24-17.542-1.46
    46(E)-3,7,11-trimethyl-1,6,10-Dodecatrien-3-ol 反式-橙花叔醇C15H26O-19.216-2.81
    47Viridiflorol 绿花白千层醇C15H26O-19.756-5.71
    482-Ethylbutyric acid, phenethyl ester 乙酸苯乙酯C14H20O2-20.949-0.57
    49(E)-1-(1,3-dimethyl-1,3-butadienyl)-2,2,6-trimethyl-7-oxabicyclo[4.1.0]heptane (E)-1-(1,3-二甲基-1,3-丁二烯基)-2,2,6-三甲基-7-氧杂双环[4.1.0]庚烷C15H24O-23.121-0.48
    50(-)-Spathulenol (-)-斯巴醇C15H24O-23.513-0.39
    512,2'-Methylenebis[6-(1,1-dimethylethyl)-4-methyl-phenol2,2'-亚甲基双-(4-甲基-6-叔丁基苯酚)C23H32O2-35.265-0.56
    注:“-”指未检测到该成分。
    Note: “-” means the component is not detected.

    Table 1.  Composition of the essential oils from buds and leaves of M. shiluensis

    石碌含笑花苞精油中共分离鉴定出39个化学成分(表1),它们的化学结构包括36个倍半萜和3个其他类型物质。花苞精油中包含多种特征香气成分及生物活性成分,其中β-红没药烯(10.64%)、α-姜黄烯(10.27%)、β-榄香烯(9.70%)、(Z,Z,Z)-1,8,11,14-十七碳四烯(5.59%)、愈创木醇(5.48%)相对含量较高。C15H24的17种同分异构体都为倍半萜烯类化合物;C15H24O的8种同分异构体有4种是倍半萜醇类,2种倍半萜氧化物类,1种倍半萜酚类、1种倍半萜酮类;C15H26O的8种同分异构体都为倍半萜醇类。石碌含笑叶片精油中共鉴定出31个化学成分(表1),主要是倍半萜醇类化合物,主要成分有愈创木醇(25.22%)、异愈创木醇(11.76%)、(Z,Z,Z)-1,8,11,14-十七碳四烯(13.54%)、[1aR-(1aα,4β,4aβ,7α,7aβ,7bα)]-十氢-1,1,4,7-四甲基-1H-环丙烷[e]天青-4-醇(5.71%)、α-桉叶油醇(3.79%)、β-桉叶油醇(3.8%)、γ-桉叶油醇(3.12%)等。叶片精油中仅有C15H24 (13种)、C15H24O (4种)、C15H26O (10种)3类同分异构体,C15H24的13种同分异构体都为倍半萜烯类化合物;C15H24O的同分异构体有2种是倍半萜醇类,1种倍半萜氧化物类,1种倍半萜酚类;C15H26O的同分异构体都为倍半萜醇类。

    表1表2所示,花苞和叶片精油中含有相同的化学成分,但各成分相对含量有所差异,两种精油共有的成分18个,愈创木醇、异愈创木醇、α-姜黄烯等主要成分含量有明显差异。两个部位精油的组成均以醇类和烯烃类为主,花苞中的烯烃类物质有18个(65.55%),β-红没药烯、α-姜黄烯以及β-榄香烯为主要成分,醇类物质有14个(27.82%),含量最高的是愈创木醇。β-榄香烯具有抑制肿瘤生长,增强脾脏和胸腺免疫功能的功效,这与其结构中的三个不饱和双键密切相关[18-19]β-红没药烯属于姜辣素,姜辣素可以显著降低小鼠的血糖值[20]α-姜黄烯、β-红没药烯及姜醇等存在的异戊烯基团可能对化合物提高α-葡萄糖苷酶的抑制作用具有一定的影响。Zhang等[21]通过构效关系研究发现1个额外的异戊烯基团可以提高α-葡萄糖苷酶的抑制作用。叶片精油中主要烯烃类物质有14个(33.86%),含量最高的是α-姜油烯,醇类物质有14个(64.76%),主要醇类物质是愈创木醇和异愈创木醇。愈创木醇和异愈创木醇是一类七元环偶联结构的倍半萜烯化合物,该类型的化合物多数具有乙酰胆碱酯酶抑制活性,且愈创木烷型倍半萜糖苷的C-10位羟基可能具有重要的抗炎活性[22-23]。有研究表明,愈创木醇可以抑制M2巨噬细胞而达到抗肺癌的作用[24]

    部位Part烯烃类/%Olefins/%醇类/%Alcohols/%酚类/%Phenolics/%脂类/%Lipids/%醛类/%Aldehydes/%酮类/%Ketones/%其他/%Others/%
    花苞 Flower bud65.5527.820.72-0.531.643.68
    叶片 Leaf33.8664.761.000.57--0.39
    注:“-”指未检测到该类化合物。
    Note: “-”means that no such compound is detected.

    Table 2.  Main compounds of the essential oils from buds and leaves of M. shiluensis

  • 石碌含笑花苞和叶片的精油对α-葡萄糖苷酶(0.2 U·mL-1)的抑制率见图2图3。活性测试实验结果表明,以金雀异黄酮[IC50=(20.55±2.66)μmol·L-1]为阳性对照,两种挥发油的质量浓度在0.75 g·L-1后,其对α-葡萄糖苷酶的抑制率均出现明显的增加。当浓度为3 g·L-1时,石碌含笑叶片挥发油对α-葡萄糖苷酶的抑制率达到87.13%,IC50=(0.73±0.04)g·L-1;花苞挥发油对α-葡萄糖苷酶的抑制率为72.27%,其IC50=(1.77±0.07)g·L-1。这表明石碌含笑叶片和花苞中的一些成分可能具有一定的降血糖活性,且叶片中挥发油的抑制率较高于花苞挥发油的抑制率,这种抑制作用可能是由于石碌含笑叶片挥发油中存在大量倍半萜醇类[25]。廖天柱[26]对六种含笑属植物提取物进行α-葡萄糖苷酶的IC50研究表明,醉香含笑(Michelia macclurei)的抑制活性最为显著, IC50为(0.69±0.06)g·L-1,其次是多花含笑(Michelia floribunda)[IC50=(1.33±0.12)g·L-1]、深山含笑(Michelia maudia)[IC50=(1.61±0.14)g·L-1]、乐昌含笑(Michelia chapensis)[(3.15±0.31)g·L-1]、台湾含笑(Michelia compressa)(IC50=(5.33±0.34)g·L-1)和阔瓣含笑(Michelia platypetala)[IC50=(6.26±0.43)g·L-1]。相较于乐昌含笑、阔瓣含笑和台湾含笑,石碌含笑挥发油对α-葡萄糖苷酶表现出显著的抑制作用。尽管体外抑制酶活性表现一般,但不能完全否定石碌含笑提取物在医疗美容、降血糖药物研发等领域的开发潜力和应用价值。石碌含笑挥发油的降血糖活性表现一般,也可能是与植物的生长环境、提取溶剂以及提取方式有关[27-28]

    Figure 2.  Inhibitory rate variation curves of leaf essential oils

    Figure 3.  Inhibitory rate variation curves of bud essential oils

  • α-葡萄糖苷酶将低聚糖或二糖水解为可吸收的单糖,从而促进人体对碳水化合物的吸收。当其活性被抑制时,能有效降低对碳水化合物的消化速率,从而达到降低餐后血糖的目的[29]。天然来源的α-葡萄糖苷酶抑制剂具有安全疗效、副作用小等优点,天然酶抑制剂的研发成为现在医药研究领域的研究热点[30-31]。目前尚未见有关于石碌含笑挥发油的成分分析和含笑属植物挥发油对α-葡糖苷酶抑制活性的报道。

    本研究通过GC-MS对石碌含笑花苞和叶片的精油进行化学成分分析以及测定了两个部位精油的α-葡萄糖苷酶抑制活性。本研究表明,在花苞和叶片的精油的组分分析中分别得到39个和31个化学成分,两个部位精油的组成都是以倍半萜醇类和倍半萜烯烃类为主,这与文献[32]报导的相似,且醇类和烯烃类相对含量的差异是区别两种精油的重要指标。花苞的挥发油成分较为丰富,可能与组织结构里有利于释放挥发油的栅栏组织和海绵组织类型有关, 而且细胞排列方式、释放挥发油成分的分泌细胞也有影响[33]。两个部位挥发油化学组成有一定的相似性,有18种成分一致,分别占叶片精油的58.06%、花苞精油的46.15%,花苞的烯烃类物质有18种,以β-红没药烯、α-姜黄烯、α-桉叶油醇以及β-榄香烯为主要成分;醇类物质有14种,含量最高的是愈创木醇;其中β-榄香烯存在于大多数含笑属植物挥发油中[34-35]。桉叶油醇能诱导人肝癌细胞的凋亡,对肝癌细胞具有抗增殖活性;可利用桉叶油醇抑制肿瘤血管的生成和肿瘤的增殖达到治疗的效果;桉叶油醇是未来治疗胆管癌的潜在药物[36-38]β-榄香烯和姜烯作为植物精油中常见的主要成分,已被报道具有一定的抗癌活性[39-41]β-榄香烯能抑制肺癌细胞生长,为治疗肺癌细胞提供了一种新的方法[42]。汪洪武等[43]的研究表明含笑花的主要成分为倍半萜醇类和倍半萜烯烃类物质,主要包括β-榄香烯、愈创木醇等成分,其中大牻牛儿烯B、长蠕孢吉码烯、丁香烯和β-榄香烯等构成了含笑特有香味。叶片主要烯烃类物质有14种,主要醇类物质有14种,主要醇类物质是愈木创醇和异愈创木醇。愈创木醇能够直接作用于寄生虫,同时对于非小细胞肺癌也具有明显的抑制作用[44]

    石碌含笑叶片和花苞的挥发油对α-葡萄糖苷酶的IC50值分别为(0.73±0.04)g·L-1和(1.77±0.07)g·L-1,叶片挥发油高于花苞挥发油可能是因为叶片挥发油中存在大量倍半萜醇类,这与祁悦等[45]对喙花姜的块茎和根中的挥发油的研究一致,块茎和根的挥发油主要为单萜和倍半萜,且表现出一定的α-葡萄糖苷酶抑制活性。同时,陆廷亚等[46]通过实验证明大高良姜地下根茎挥发油对α-葡萄糖苷酶表现出一定的抑制作用,其中的挥发油成分也主要为倍半萜等。植物精油中成分较为复杂,虽然许多木兰科植物的精油能够表现出α-葡萄糖苷酶抑制作用,但具体与α-葡萄糖苷酶发生结合的组分以及结合的强度尚不清晰。后续试验可以通过体内实验验证这些具有α-葡萄糖苷酶抑制活性的组分在体内的降血糖作用及机制。由于精油对酶抑制作用的强弱以及体外实验的局限性,精油是否能够降低人体血糖或者作为降血糖药物的辅助剂,这仍需要通过进一步的实验验证。

  • 从水蒸气蒸馏法提取的石碌含笑花苞和叶片的精油中分别检测到39个和31个化学成分,都以倍半萜醇类和倍半萜烯烃类为主。两种精油共有的成分18个,其中愈创木醇、异愈创木醇、α-姜黄烯等主要成分含量有明显差异,且醇类和烯烃类相对含量的差异是区别两种精油的重要指标。研究结果表明,石碌含笑叶片挥发油对α-葡萄糖苷酶的抑制率达到87.13%,IC50为(0.73±0.04)g·L-1;花苞挥发油对α-葡萄糖苷酶的抑制率为72.27%,其IC50为(1.77±0.07)g·L-1。石碌含笑的花苞和叶片的精油具有良好的α-葡萄糖苷酶抑制活性,为石碌含笑资源的综合利用及高值化加工提供新思路,也为其在降血糖等方面的研究提供理论依据。

Reference (46)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return