[1] VAQUER-SUNYER R, DUARTE C M. Thresholds of hypoxia for marine biodiversity [J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(40): 15452 − 15457. doi:  10.1073/pnas.0803833105
[2] WU R S S. Hypoxia: from molecular responses to ecosystem responses [J]. Marine Pollution Bulletin, 2002, 45(1/2/3/4/5/6/7/8/9/10/11/12): 35 − 45. doi:  10.1016/S0025-326X(02)00061-9
[3] 王兴强, 马甡, 董双林. 凡纳滨对虾生物学及养殖生态学研究进展[J]. 海洋湖沼通报, 2004(4): 94 − 100. doi:  10.3969/j.issn.1003-6482.2004.04.016
[4] 孙盛明, 祝孟茹, 潘方艳,等. 低氧对甲壳动物的影响及其分子调控研究进展[J]. 水产学报, 2020, 44(4): 690 − 704.
[5] WENGER R H, STIEHL D P, CAMENISCH G. Integration of oxygen signaling at the consensus HRE [J]. Science,s STKE:signal transduction knowledge environment, 2005, 2005(306): e3062005re12.
[6] CAMACHO-JIMÉNEZ L, LEYVA-CARRILLO L, PEREGRINO-URIARTE A B, et al. Regulation of glyceraldehyde-3-phosphate dehydrogenase by hypoxia inducible factor 1 in the white shrimp Litopenaeus vannamei during hypoxia and reoxygenation [J]. Comparative Biochemistry and Physiology Part A:Molecular & Integrative Physiology, 2019, 235: 56 − 65.
[7] COTA-RUIZ K, LEYVA-CARRILLO L, PEREGRINO-URIARTE A B, et al. Role of HIF-1 on phosphofructokinase and fructose 1, 6-bisphosphatase expression during hypoxia in the white shrimp Litopenaeus vannamei [J]. Comparative Biochemistry and Physiology Part A:Molecular & Integrative Physiology, 2016, 198: 1 − 7.
[8] DUARTE-GUTIÉRREZ J, PEREGRINO-URIARTE A B, GÓMEZ-JIMÉNEZ S, et al. HIF-1 is involved in the regulation of expression of metallothionein and apoptosis incidence in different oxygen conditions in the white shrimp Litopenaeus vannamei [J]. Comparative Biochemistry and Physiology Part A:Molecular & Integrative Physiology, 2021, 262: 111072.
[9] GODOY-LUGO J A, MIRANDA-CRUZ M M, ALFREDO ROSAS-RODRÍGUEZ J A, et al. Hypoxia inducible factor-1 regulates WSSV-induced glycolytic genes in the white shrimp Litopenaeus vannamei [J]. Fish & Shellfish Immunology, 2019, 92: 165 − 171.
[10] MIRANDA-CRUZ M M, POOM-LLAMAS J J, GODOY-LUGO J A, et al. Silencing of HIF-1 in WSSV-infected white shrimp: Effect on viral load and antioxidant enzymes [J]. Comparative Biochemistry and Physiology Part C:Toxicology & Pharmacology, 2018, 213: 19 − 26.
[11] SONANEZ-ORGANIS J G, PEREGRINO-URIARTE A B, GÓMEZ-JIMÉNEZ S, et al. Molecular characterization of hypoxia inducible factor-1 (HIF-1) from the white shrimp Litopenaeus vannamei and tissue-specific expression under hypoxia [J]. Comparative Biochemistry and Physiology. Part C:Toxicology & Pharmacology, 2009, 150(3): 395 − 405.
[12] SOÑANEZ-ORGANIS J G, PEREGRINO-URIARTE A B, SOTELO-MUNDO R R, et al. Hexokinase from the white shrimp Litopenaeus vannamei: cDNA sequence, structural protein model and regulation via HIF-1 in response to hypoxia [J]. Comparative Biochemistry and Physiology. Part B:Biochemistry & Molecular Biology, 2011, 158(3): 242 − 249.
[13] SOÑANEZ-ORGANIS J G, RACOTTA I S, YEPIZ-PLASCENCIA G. Silencing of the hypoxia inducible factor 1-HIF-1-obliterates the effects of hypoxia on glucose and lactate concentrations in a tissue-specific manner in the shrimp Litopenaeus vannamei [J]. Journal of Experimental Marine Biology and Ecology, 2010, 393(1/2): 51 − 58. doi:  10.1016/j.jembe.2010.06.031
[14] CERENIUS L, JIRAVANICHPAISAL P, LIU H-P, et al. Crustacean Immunity[M]. // Soderhaill K. Invertebrate Immunity. Springer US. 2010: 239-259.
[15] 陈钦胜. 拟穴青蟹在盐度胁迫下血细胞免疫调控机制的研究[D]. 海口: 海南大学, 2020.
[16] 杨留冰. 凡纳滨对虾(Litopenaeus vannamei)血蓝蛋白免疫作用的初步研究[D]. 青岛: 中国海洋大学, 2013.
[17] SÖDERHÄLL I. Crustacean hematopoiesis [J]. Developmental and Comparative Immunology, 2016, 58: 129 − 141. doi:  10.1016/j.dci.2015.12.009
[18] CHAROENSAPSRI W, SANGSURIYA P, LERTWIMOL T, et al. Laminin receptor protein is implicated in hemocyte homeostasis for the whiteleg shrimp Penaeus (Litopenaeus) vannamei [J]. Developmental and Comparative Immunology, 2015, 51(1): 39 − 47. doi:  10.1016/j.dci.2015.02.012
[19] 王冰心, 叶均安. 虾类血清中免疫相关酶的研究进展[J]. 中国饲料, 2009(3): 27 − 28. doi:  10.3969/j.issn.1004-3314.2009.03.010
[20] 桂建芳, 朱作言. 水产动物重要经济性状的分子基础及其遗传改良[J]. 科学通报, 2012, 57(19): 1719 − 1729.
[21] LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2–ΔΔCT Method [J]. Methods (San Diego, Calif. ), 2001, 25(4): 402 − 408. doi:  10.1006/meth.2001.1262
[22] KULKARNI A, KRISHNAN S, ANAND D, et al. Immune responses and immunoprotection in crustaceans with special reference to shrimp [J]. Reviews in Aquaculture, 2021, 13(1): 431 − 459. doi:  10.1111/raq.12482
[23] 陈琪, 康翠洁. 虾类血细胞的分类与功能研究进展[J]. 生物工程学报, 2021, 37(1): 53 − 66. doi:  10.13345/j.cjb.200269
[24] WEI L, LI Y, QIU L, et al. Comparative studies of hemolymph physiology response and HIF-1 expression in different strains of Litopenaeus vannamei under acute hypoxia [J]. Chemosphere, 2016, 153: 198 − 204. doi:  10.1016/j.chemosphere.2016.03.064
[25] 黄天鸽, 金彩霞, 潘鲁青. 低氧胁迫对凡纳滨对虾血蓝蛋白、自由氨基酸含量和体内Cu2+转运的影响[J]. 海洋湖沼通报, 2015(2): 16 − 22. doi:  10.13984/j.cnki.cn37-1141.2015.02.003
[26] COATES C J, NAIRN J. Diverse immune functions of hemocyanins [J]. Developmental and Comparative Immunology, 2014, 45(1): 43 − 55. doi:  10.1016/j.dci.2014.01.021
[27] 李玉虎. 凡纳滨对虾生长发育规律及对低氧胁迫响应的研究[D]. 海口: 海南大学, 2015.
[28] 梁高峰. 凡纳滨对虾造血激素(astakine)的表达及其功能研究[D]. 青岛: 中国海洋大学, 2011.
[29] WANG J, XU Z, HE J. The role of HIF-1 α in the energy metabolism and immune responses of hypoxic Scylla paramamosain[J]. Aquaculture Reports, 2021, 20: 100740.
[30] 杨丰, 李钫. 甲壳动物造血机制研究进展[J]. 应用海洋学学报, 2019, 38(4): 484 − 489. doi:  10.3969/J.ISSN.2095-4972.2019.04.004
[31] PRAPAVORARAT A, VATANAVICHARN T, SÖDERHÄLL K, et al. A novel viral responsive protein is involved in Hemocyte homeostasis in the Black Tiger Shrimp, Penaeus monodon [J]. The Journal of Biological Chemistry, 2010, 285(28): 21467 − 21477. doi:  10.1074/jbc.M110.130526
[32] HSIEH S L, CHIU Y C, KUO C M. Molecular cloning and tissue distribution of ferritin in Pacific white shrimp (Litopenaeus vannamei) [J]. Fish & Shellfish Immunology, 2006, 21(3): 279 − 283.
[33] RUAN Y H, KUO C M, LO C F, et al. Ferritin administration effectively enhances immunity, physiological responses, and survival of Pacific white shrimp (Litopenaeus vannamei) challenged with white spot syndrome virus [J]. Fish & Shellfish Immunology, 2010, 28(4): 542 − 548.
[34] YE T, WU X, WU W, et al. Ferritin protects shrimp Litopenaeus vannamei from WSSV infection by inhibiting virus replication [J]. Fish & Shellfish Immunology, 2015, 42(1): 138 − 143.
[35] 刘志鸿, 牟海津, 王清印. 软体动物免疫相关酶研究进展[J]. 海洋水产研究, 2003,24(3): 86 − 90.
[36] 田耕晨, 曾文涛. 脂多糖对三角帆蚌酸性磷酸酶和碱性磷酸酶活力的影响[J]. 浙江农业科学, 2018, 59(2): 269 − 270. doi:  10.16178/j.issn.0528-9017.20180232
[37] 管晓娟. 甲壳动物体液免疫相关酶及免疫因子研究概况[J]. 生命科学仪器, 2009, 7(6): 3 − 7. doi:  10.3969/j.issn.1671-7929.2009.06.001
[38] 樊廷俊, 荆昭, 樊现远. 海洋无脊椎动物酚氧化酶的研究进展[J]. 中国海洋大学学报(自然科学版), 2012, 42(Z1): 93 − 98. doi:  10.16441/j.cnki.hdxb.2012.z1.015
[39] 宋芹芹, 李玉虎, 周海龙. 凡纳滨对虾应答低氧-复氧胁迫免疫相关酶活力的时空变化[J]. 热带生物学报, 2015, 6(4): 353 − 358. doi:  10.15886/j.cnki.rdswxb.2015.04.001