[1] Luis Fuentes V, Abbott J, Chetboul V, et al. ACVIM consensus statement guidelines for the classification, diagnosis, and management of cardiomyopathies in cats [J]. Journal of Veterinary Internal Medicine, 2020, 34(3): 1062−1077. https://doi.org/10.1111/jvim.15745 doi:  10.1111/jvim.15745
[2] Ho C Y, López B, Coelho-Filho O R, et al. Myocardial fibrosis as an early manifestation of hypertrophic cardiomyopathy [J]. The New England Journal of Medicine, 2010, 363(6): 552−563. https://doi.org/10.1056/NEJMoa1002659 doi:  10.1056/NEJMoa1002659
[3] Camelliti P, Borg T K, Kohl P. Structural and functional characterisation of cardiac fibroblasts [J]. Cardiovascular Research, 2005, 65(1): 40−51. https://doi.org/10.1016/j.cardiores.2004.08.020 doi:  10.1016/j.cardiores.2004.08.020
[4] Souders C A, Bowers S L K, Baudino T A. Cardiac fibroblast: the renaissance cell [J]. Circulation Research, 2009, 105(12): 1164−1176. https://doi.org/10.1161/CIRCRESAHA.109.209809 doi:  10.1161/CIRCRESAHA.109.209809
[5] Berry M F, Engler A J, Joseph Woo Y, et al. Mesenchymal stem cell injection after myocardial infarction improves myocardial compliance [J]. American Journal of Physiology Heart and Circulatory Physiology, 2006, 290(6): H2196−2203. https://doi.org/10.1152/ajpheart.01017.2005 doi:  10.1152/ajpheart.01017.2005
[6] Vanhoutte D, Schellings M, Pinto Y, et al. Relevance of matrix metalloproteinases and their inhibitors after myocardial infarction: a temporal and spatial window [J]. Cardiovascular Research, 2006, 69(3): 604−613. https://doi.org/10.1016/j.cardiores.2005.10.002 doi:  10.1016/j.cardiores.2005.10.002
[7] Kitz S, Fonfara S, Hahn S, et al. Feline hypertrophic cardiomyopathy: the consequence of cardiomyocyte-initiated and macrophage-driven remodeling processes? [J]. Veterinary Pathology, 2019, 56(4): 565−575. https://doi.org/10.1177/0300985819837717 doi:  10.1177/0300985819837717
[8] Ragazzini S, Scocozza F, Bernava G, et al. Mechanosensor YAP cooperates with TGF-β1 signaling to promote myofibroblast activation and matrix stiffening in a 3D model of human cardiac fibrosis [J]. Acta Biomaterialia, 2022, 152: 300−312. https://doi.org/10.1016/j.actbio.2022.08.063 doi:  10.1016/j.actbio.2022.08.063
[9] Kang M, Long T, Chang C, et al. A review of the ethical use of animals in functional experimental research in China based on the “four R” principles of reduction, replacement, refinement, and responsibility [J]. Medical Science Monitor, 2022, 28: e938807.
[10] Sahadevan P, Allen B G. Isolation and culture of adult murine cardiac atrial and ventricular fibroblasts and myofibroblasts [J]. Methods, 2022, 203: 187−195. https://doi.org/10.1016/j.ymeth.2021.04.004 doi:  10.1016/j.ymeth.2021.04.004
[11] Doppler S A, Carvalho C, Lahm H, et al. Cardiac fibroblasts: more than mechanical support [J]. Journal of Thoracic Disease, 2017, 9(S1): S36−S51. https://doi.org/10.21037/jtd.2017.03.122 doi:  10.21037/jtd.2017.03.122
[12] Tarbit E, Singh I, Peart J N, et al. Biomarkers for the identification of cardiac fibroblast and myofibroblast cells [J]. Heart Failure Reviews, 2019, 24(1): 1−15. https://doi.org/10.1007/s10741-018-9720-1 doi:  10.1007/s10741-018-9720-1
[13] Kurose H. Cardiac fibrosis and fibroblasts [J]. Cells, 2021, 10(7): 1716. https://doi.org/10.3390/cells10071716 doi:  10.3390/cells10071716
[14] Melzer M, Beier D, Young P P, et al. Isolation and characterization of adult cardiac fibroblasts and myofibroblasts [J]. Journal of Visualized Experiments, 2020, (157). https://doi.org/10.3791/60909 doi:  10.3791/60909
[15] Kumar S, Nagesh D, Ramasubbu V, et al. Isolation and culture of primary fibroblasts from neonatal murine hearts to study cardiac fibrosis [J]. Bio-protocol, 2023, 13(4): e4616.
[16] Rohr S. Cardiac fibroblasts in cell culture systems: myofibroblasts all along? [J]. Journal of Cardiovascular Pharmacology, 2011, 57(4): 389−399. https://doi.org/10.1097/FJC.0b013e3182137e17 doi:  10.1097/FJC.0b013e3182137e17
[17] Landry N M, Rattan S G, Dixon I M C. An improved method of maintaining primary murine cardiac fibroblasts in two-dimensional cell culture [J]. Scientific Reports, 2019, 9(1): 12889. https://doi.org/10.1038/s41598-019-49285-9 doi:  10.1038/s41598-019-49285-9
[18] Galie P A, Westfall M V, Stegemann J P. Reduced serum content and increased matrix stiffness promote the cardiac myofibroblast transition in 3D collagen matrices [J]. Cardiovascular Pathology, 2011, 20(6): 325−333. https://doi.org/10.1016/j.carpath.2010.10.001 doi:  10.1016/j.carpath.2010.10.001
[19] Bracco Gartner T C L, Crnko S, Leiteris L, et al. Pirfenidone has anti-fibrotic effects in a tissue-engineered model of human cardiac fibrosis [J]. Frontiers in Cardiovascular Medicine, 2022, 9: 854314. https://doi.org/10.3389/fcvm.2022.854314 doi:  10.3389/fcvm.2022.854314
[20] Humeres C, Vivar R, Boza P, et al. Cardiac fibroblast cytokine profiles induced by proinflammatory or profibrotic stimuli promote monocyte recruitment and modulate macrophage M1/M2 balance in vitro [J]. Journal of Molecular and Cellular Cardiology, 2016, 101: 69−80. https://doi.org/10.1016/j.yjmcc.2016.10.014 doi:  10.1016/j.yjmcc.2016.10.014