[1] LESSER M P J S N. Coral bleaching: causes and mechanisms[M]. Berlin: Springer Netherlands, 2011.
[2] STAMBLER N. Coral symbiosis under stress[M]. Berlin: Springer Netherlands, 2010.
[3] HUGHES T P, BAIRD A H, BELLWOOD D R, et al. Climate change, human impacts, and the resilience of coral reefs [J]. Science, 2003, 301(5635): 929 − 933. doi:  10.1126/science.1085046
[4] WICKS L C, HILL R, DAVY S K. The influence of irradiance on tolerance to high and low temperature stress exhibited by Symbiodinium in the coral, Pocillopora damicornis, from the high-latitude reef of Lord Howe Island [J]. Limnology And Oceanography, 2010, 55(6): 2476 − 2486. doi:  10.4319/lo.2010.55.6.2476
[5] LITTMAN R A, OPPEN M, WILLIS B L. Methods for sampling free-living Symbiodinium (zooxanthellae) and their distribution and abundance at Lizard Island (Great Barrier Reef) [J]. Journal of Experimental Marine Biology and Ecology, 2008, 364(1): 48 − 53. doi:  10.1016/j.jembe.2008.06.034
[6] OZDALGIC B, USTUN M, DABBAGH S R, et al. Microfluidics for microalgal biotechnology [J]. Biotechnol Bioeng, 2021, 118(4): 1545 − 1563. doi:  10.1002/bit.27671
[7] ANTONACCI A, SCOGNAMIGLIO V. Biotechnological advances in the design of algae-based biosensors [J]. Trends Biotechnol, 2020, 38(3): 334 − 347. doi:  10.1016/j.tibtech.2019.10.005
[8] WANG J, WANG G, CHEN M, et al. An integrated microfluidic chip for treatment and detection of microalgae cells [J]. Algal Research, 2019, 42: 101593. doi:  10.1016/j.algal.2019.101593
[9] WANG Y, WANG J, ZHOU C, et al. A Microfluidic prototype system towards microalgae cell separation, treatment and viability characterization [J]. Sensors (Basel), 2019, 19(22): 4940. doi:  10.3390/s19224940
[10] WANG Y, WANG J, WU X, et al. Dielectrophoretic separation of microalgae cells in ballast water in a microfluidic chip [J]. Electrophoresis, 2019, 40(6): 969 − 978. doi:  10.1002/elps.201800302
[11] YUAN Q, MIRZAJANI H, EVANS B, et al. A disposable bulk-acoustic-wave microalga trapping device for real-time water monitoring [J]. Sensors And Actuators B-Chemical, 2020, 304: 127388. doi:  10.1016/j.snb.2019.127388
[12] RAYMOND S J, COLLINS D J, O'RORKE R, et al. A deep learning approach for designed diffraction-based acoustic patterning in microchannels [J]. Sci Rep, 2020, 10: 8745. doi:  10.1038/s41598-020-65453-8
[13] STOECKLEIN D, LORE K G, DAVIES M, et al. Deep learning for flow sculpting: insights into efficient learning using scientific simulation data [J]. Sci Rep, 2017, 7: 46368. doi:  10.1038/srep46368
[14] FEIZI A, ZHANG Y, GREENBAUM A, et al. Rapid, portable and cost-effective yeast cell viability and concentration analysis using lensfree on-chip microscopy and machine learning [J]. Lab Chip, 2016, 16(22): 4350 − 4358. doi:  10.1039/C6LC00976J
[15] ISOZAKI A, HARMON J, ZHOU Y, et al. AI on a chip [J]. Lab Chip, 2020, 20(17): 3074 − 3090. doi:  10.1039/D0LC00521E
[16] NITTA N, SUGIMURA T, ISOZAKI A, et al. Intelligent image-activated cell sorting [J]. Cell, 2018, 175(1): 266 − 276. doi:  10.1016/j.cell.2018.08.028
[17] KIM K, KIM S, JEON J S. Visual estimation of bacterial growth level in microfluidic culture systems [J]. Sensors (Basel), 2018, 18(2): 447. doi:  10.3390/s18020447
[18] ZHANG Z, CHEN L, WANG Y, et al. Label-free estimation of therapeutic efficacy on 3D cancer spheres using convolutional neural network image analysis [J]. Anal Chem, 2019, 91(21): 14093 − 14100. doi:  10.1021/acs.analchem.9b03896
[19] MATSUMOTO Y, SAKAKIHARA S, GRUSHNIKOV A, et al. A microfluidic channel method for rapid drug-susceptibility testing of Pseudomonas aeruginosa [J]. PLoS One, 2016, 11(2): e0148797. doi:  10.1371/journal.pone.0148797
[20] FUKUSHIMA K. Training multi-layered neural network neocognitron [J]. Neural Netw, 2013, 40: 18 − 31. doi:  10.1016/j.neunet.2013.01.001
[21] LECUN Y, BENGIO Y, HINTON G. Deep learning [J]. Nature, 2015, 521(7553): 436 − 444. doi:  10.1038/nature14539
[22] HAASEN D, SCHOPFER U, ANTCZAK C, et al. How phenotypic screening influenced drug discovery: lessons from five years of practice [J]. Assay Drug Dev Technol, 2017, 15(6): 239 − 246. doi:  10.1089/adt.2017.796
[23] MATTIAZZI USAJ M, STYLES E B, VERSTER A J, et al. High-content screening for quantitative cell biology [J]. Trends Cell Biol, 2016, 26(8): 598 − 611. doi:  10.1016/j.tcb.2016.03.008
[24] XU M, HARMON J, YUAN D, et al. Morphological indicator for directed evolution of Euglena gracilis with a high heavy metal removal efficiency [J]. Environ Sci Technol, 2021, 55(12): 7880 − 7889. doi:  10.1021/acs.est.0c05278
[25] GUO B, LEI C, KOBAYASHI H, et al. High-throughput, label-free, single-cell, microalgal lipid screening by machine-learning-equipped optofluidic time-stretch quantitative phase microscopy [J]. Cytometry A, 2017, 91(5): 494 − 502. doi:  10.1002/cyto.a.23084
[26] CHEN C L, MAHJOUBFAR A, TAI L C, et al. Deep learning in label-free cell classification [J]. Sci Rep, 2016, 6: 21471. doi:  10.1038/srep21471
[27] XIONG B, HONG T Q, SCHELLHORN H, et al. Dual-modality imaging microfluidic cytometer for onsite detection of phytoplankton [J]. Photonics, 2021, 8(10): 435. doi:  10.3390/photonics8100435
[28] WANG J, YU X, WANG Y, et al. Detection of viability of micro-algae cells by optofluidic hologram pattern [J]. Biomicrofluidics, 2018, 12(2): 024111. doi:  10.1063/1.5021179
[29] GRCS Z, TAMAMITSU M, BIANCO V, et al. A deep learning-enabled portable imaging flow cytometer for cost-effective, high-throughput, and label-free analysis of natural water samples [J]. Light Sci Appl, 2018, 7: 66. doi:  10.1038/s41377-018-0067-0
[30] BOCHKOVSKIY A, WANG C Y, LIAO H. YOLOv4: optimal speed and accuracy of object detection [J]. arXiv e-prints, 2020, arXiv: 2004.10934.
[31] GIRAULT M, KIM H, ARAKAWA H, et al. An on-chip imaging droplet-sorting system: a real-time shape recognition method to screen target cells in droplets with single cell resolution [J]. Sci Rep, 2017, 7: 40072. doi:  10.1038/srep40072
[32] HEO Y J, LEE D, KANG J, et al. Real-time image processing for microscopy-based label-free imaging flow cytometry in a microfluidic chip [J]. Sci Rep, 2017, 7: 11651. doi:  10.1038/s41598-017-11534-0