[1] 钱远槐, 刘艳玲, 李守涛, 等. 中国黑腹果蝇种组的组成与分布[J]. 湖北大学学报(自然科学版), 2006,28(4): 397 − 402.
[2] 方志鹏, 林石明, 陈红运, 等. 2014年EPPO检疫性有害生物名录的变化[J]. 植物检疫, 2015, 29(4): 92 − 100.
[3] CINI A, ANFORA G, ESCUDERO-COLOMAR L A, et al. Tracking the invasion of the alien fruit pest Drosophila suzukii in Europe [J]. Journal of Pest Science, 2014, 87(4): 559 − 566. doi:  10.1007/s10340-014-0617-z
[4] 刘庆忠, 王晓芳, 王甲威, 等. 斑翅果蝇在甜樱桃, 蓝莓等果树上的发生危害与防治策略[J]. 落叶果树, 2014, 46(6): 1 − 3.
[5] LEE J C, DREVES A J, CAVE A M, et al. Infestation of wild and ornamental noncrop fruits by Drosophila suzukii (Diptera: Drosophilidae) [J]. Annals of the Entomological Society of America, 2015, 108(2): 117 − 129. doi:  10.1093/aesa/sau014
[6] 刘佩旋, 刘成, 徐晓蕊, 等. 一种危险性有害生物:斑翅果蝇研究现状[J]. 中国植保导刊, 2017, 37(5): 5 − 11.
[7] 刘佩旋. 辽宁省部分地区斑翅果蝇发生情况与繁殖力的研究 [D]. 沈阳: 沈阳农业大学, 2017.
[8] 张开春, 闫国华, 郭晓军, 等. 斑翅果蝇(Drosophila suzukii )研究现状[J]. 果树学报, 2014,31(4): 717 − 721.
[9] 王小雪, 刘波, 李志红, 等. 斑翅果蝇检疫研究进展[J]. 植物检疫, 2019,33(2): 14 − 18.
[10] 郭洁, 张艺馨, 周锐, 等. 几种杀虫剂对斑翅果蝇室内毒力测定[J]. 植物检疫, 2017,31(1): 51 − 53. doi:  10.19662/j.cnki.issn1005-2755.2017.01.015
[11] DENHOLM I, DEVINE G J, WILLIAMSON M S. Insecticide resistance on the move [J]. Science, 2002, 297(5590): 2222 − 2223. doi:  10.1126/science.1077266
[12] DISI J O, SIAL A A . Laboratory selection and assessment of resistance risk in Drosophila suzukii (Diptera: Drosophilidae) to spinosad and malathion [J]. Insects, 2021, 12(9): 794. doi:  10.3390/insects12090794
[13] DEANS C, HUTCHISON W D J P M S. Propensity for resistance development in the invasive berry pest, spotted‐wing Drosophila (Drosophila suzukii), under laboratory selection [J]. Pest Management Science, 2022, 78: 5203 − 5212. doi:  10.1002/ps.7139
[14] 阮成龙, 米智, 朱勇. 昆虫抗药性机制研究进展[J]. 蚕业科学, 2012, 38(2): 322 − 328. doi:  10.3969/j.issn.0257-4799.2012.02.021
[15] DESPRÉS L, DAVID J P, GALLET C. The evolutionary ecology of insect resistance to plant chemicals [J]. Trends in Ecology & Evolution, 2007, 22(6): 298 − 307.
[16] GREEN M T, DAWSON J H, GRAY H B. Oxoiron (IV) in chloroperoxidase compound II is basic: implications for P450 chemistry [J]. Science, 2004, 304(5677): 1653 − 1656. doi:  10.1126/science.1096897
[17] MÜLLER P, WARR E, STEVENSON B J, et al. Field-caught permethrin-resistant Anopheles gambiae overexpress CYP6P3, a P450 that metabolises pyrethroids [J]. PLoS Genetics, 2008, 4(11): e1000286. doi:  10.1371/journal.pgen.1000286
[18] LI X, SCHULER M A, BERENBAUM M R. Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics [J]. Annual Review of Entomology, 2007, 52: 231 − 253. doi:  10.1146/annurev.ento.51.110104.151104
[19] 尤燕春, 谢苗, 尤民生. 昆虫谷胱甘肽 S-转移酶的多样性及其介导的抗药性[J]. 应用昆虫学报, 2013, 50(3): 831 − 840. doi:  10.7679/j.issn.2095-1353.2013.116
[20] 常海静. 转尖音库蚊羧酸酯酶及其突变基因果蝇的杀虫剂抗性研究[D]. 保定: 河北农业大学, 2011.
[21] BURCHELL B, COUGHTRIE M W H. UDP-glucuronosyltransferases [J]. Pharmacology & Therapeutics, 1989, 43(2): 261 − 289.
[22] KOJIMA W, FUJII T, SUWA M, et al. Physiological adaptation of the Asian corn borer Ostrinia furnacalis to chemical defenses of its host plant, maize [J]. Journal of Insect Physiology, 2010, 56(9): 1349 − 1355. doi:  10.1016/j.jinsphys.2010.04.021
[23] DERMAUW W, VAN LEEUWEN T. The ABC gene family in arthropods: comparative genomics and role in insecticide transport and resistance [J]. Insect Biochemistry and Molecular Biology, 2014, 45: 89 − 110. doi:  10.1016/j.ibmb.2013.11.001
[24] LABBÉ R, CAVENEY S, DONLY C. Genetic analysis of the xenobiotic resistance-associated ABC gene subfamilies of the Lepidoptera [J]. Insect Molecular Biology, 2011, 20(2): 243 − 256. doi:  10.1111/j.1365-2583.2010.01064.x
[25] 梅洋, 杨义, 叶昕海, 等. 草地贪夜蛾解毒代谢相关基因家族的进化分析[J]. 环境昆虫学报, 2019, 41(4): 727 − 735.
[26] YANG L, XING B, LI F, et al. Full-length transcriptome analysis of Spodoptera frugiperda larval brain reveals detoxification genes [J]. PeerJ, 2021, 9: e12069. doi:  10.7717/peerj.12069
[27] 尹传林. 二化螟抗药性相关基因家族分析及数据库的构建[D]. 南京: 南京农业大学, 2016.
[28] 尹传林, 叶昕海, 陈梦瑶, 等. 寄生蜂细胞色素 P450 基因家族进化分析[J]. 中国生物防治学报, 2019, 35(3): 335-342.
[29] 刘莹, 肖花美, 梅洋, 等. 草地贪夜蛾化学感受相关基因家族的进化分析[J]. 环境昆虫学报, 2019, 41(4): 718 − 726.
[30] 李根层, 赵昱杰, 赵宁, 等. 基于转录组学的管纹艳虎天牛表皮蛋白基因家族的鉴定及特征分析 [J]. 环境昆虫学报, 2021, 43(1): 1-14.
[31] ATTRILL H, FALLS K, GOODMAN J L, et al. FlyBase: establishing a Gene Group resource for Drosophila melanogaster [J]. Nucleic Acids Research, 2016, 44(D1): D786 − D792. doi:  10.1093/nar/gkv1046
[32] CHEN C, CHEN H, ZHANG Y, et al. TBtools: an integrative toolkit developed for interactive analyses of big biological data [J]. Molecular Plant, 2020, 13(8): 1194 − 1202. doi:  10.1016/j.molp.2020.06.009
[33] KUMAR S, STECHER G, LI M, et al. MEGA X: molecular evolutionary genetics analysis across computing platforms [J]. Molecular Biology and Evolution, 2018, 35(6): 1547 − 1549. doi:  10.1093/molbev/msy096
[34] LETUNIC I, BORK P. 20 years of the SMART protein domain annotation resource [J]. Nucleic Acids Research, 2018, 46(D1): D493 − D496. doi:  10.1093/nar/gkx922
[35] BAILEY T L, JOHNSON J, GRANT C E, et al. The MEME suite [J]. Nucleic Acids Research, 2015, 43(W1): W39 − W49. doi:  10.1093/nar/gkv416
[36] PANINI M, MANICARDI G , MOORES G , et al. An overview of the main pathways of metabolic resistance in insects [J]. Invertebrate Survival Journal, 2016, 13(1): 326 − 335.
[37] GEORGHIOU G P. Pest resistance to pesticides [M]. New York: Springer Science & Business Media, 2012.
[38] RAMSEY J S, RIDER D S, WALSH T K, et al. Comparative analysis of detoxification enzymes in Acyrthosiphon pisum and Myzus persicae [J]. Insect Molecular Biology, 2010, 19(S2): 155 − 164. doi:  10.1111/j.1365-2583.2009.00973.x
[39] 郭亭亭, 姜辉, 高希武. 昆虫细胞色素 P450 基因的多样性、进化及表达调控[J]. 昆虫学报, 2009, 52(3): 301 − 311. doi:  10.3321/j.issn:0454-6296.2009.03.010
[40] 朱克森, 黄钧鸿, 冯启理, 等. 草地贪夜蛾与斜纹夜蛾解毒相关基因的比较分析[J]. 环境昆虫学报, 2020, 42(2): 318 − 328.
[41] DABORN P, BOUNDY S, YEN J, et al. DDT resistance in Drosophila correlates with Cyp6g1 over-expression and confers cross-resistance to the neonicotinoid imidacloprid [J]. Molecular Genetics and Genomics, 2001, 266(4): 556 − 563. doi:  10.1007/s004380100531
[42] CAMPBELL P M, NEWCOMB R D, RUSSELL R J, et al. Two different amino acid substitutions in the ali-esterase, E3, confer alternative types of organophosphorus insecticide resistance in the sheep blowfly, Lucilia cuprina [J]. Insect Biochemistry and Molecular Biology, 1998, 28(3): 139 − 150. doi:  10.1016/S0965-1748(97)00109-4
[43] CLAUDIANOS C, RUSSELL R J, OAKESHOTT J G. The same amino acid substitution in orthologous esterases confers organophosphate resistance on the house fly and a blowfly [J]. Insect Biochemistry and Molecular Biology, 1999, 29(8): 675 − 686. doi:  10.1016/S0965-1748(99)00035-1
[44] DEVONSHIRE A L, SAWICKI R M. Insecticide-resistant Myzus persicae as an example of evolution by gene duplication [J]. Nature, 1979, 280(5718): 140 − 141. doi:  10.1038/280140a0
[45] OPPENOORTH F J, VAN ASPEREN K. Allelic genes in the housefly producing modified enzymes that cause organophosphate resistance [J]. Science, 1960, 132(3422): 298 − 299. doi:  10.1126/science.132.3422.298
[46] BULL D L, WHITTEN C J. Factors influencing organophosphorus insecticide resistance in tobacco budworms [J]. Journal of Agricultural and Food Chemistry, 1972, 20(3): 561 − 564. doi:  10.1021/jf60181a061
[47] KAPLANOGLU E, CHAPMAN P, SCOTT I M, et al. Overexpression of a cytochrome P450 and a UDP-glycosyltransferase is associated with imidacloprid resistance in the Colorado potato beetle, Leptinotarsa decemlineata [J]. Scientific Reports, 2017, 7: 1762. doi:  10.1038/s41598-016-0028-x
[48] CHENG Y, LI Y, LI W, et al. Inhibition of hepatocyte nuclear factor 4 confers imidacloprid resistance in Nilaparvata lugens via the activation of cytochrome P450 and UDP-glycosyltransferase genes [J]. Chemosphere, 2021, 263: 128269. doi:  10.1016/j.chemosphere.2020.128269
[49] TOUNG Y P, HSIEH T S, TU C P. Drosophila glutathione S-transferase 1-1 shares a region of sequence homology with the maize glutathione S-transferase III [J]. Proceedings of the National Academy of Sciences of the United States of America, 1990, 87(1): 31 − 35. doi:  10.1073/pnas.87.1.31
[50] 韩金波. 马铃薯甲虫谷胱甘肽转移酶家族基因的鉴定及其对三种杀虫剂的响应[D]. 南京: 南京农业大学, 2016.
[51] 廖重宇. 柑橘全爪螨谷胱甘肽 S-转移酶解毒代谢功能研究[D]. 重庆: 西南大学, 2016.
[52] BALAKRISHNAN B. 禾谷缢管蚜谷胱甘肽转移酶分子克隆和功能表达研究[D]. 杨凌: 西北农林科技大学, 2018.
[53] YOU M, YUE Z, HE W, et al. A heterozygous moth genome provides insights into herbivory and detoxification [J]. Nature Genetics, 2013, 45(2): 220 − 225. doi:  10.1038/ng.2524
[54] DEAN M, HAMON Y, CHIMINI G. The human ATP-binding cassette (ABC) transporter superfamily [J]. Journal of Lipid Research, 2001, 42(7): 1007 − 1017. doi:  10.1016/S0022-2275(20)31588-1