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Tab. 1 Homologous sequence alignment of geraniol synthase
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ObGES 0s02g0121700  OsLIS 596 290 le-78 34
0s08g0139700  (E)-&beta;-caryophyllene synthase 577 262 5e-70 34
0s08g0139700  Similar to terpene synthase 6 520 261 le-69 34
CsTPS1 050120337100  OsTPSI 555 276 3e-74 32
0Os04t0344100  Similar to OSIGBa0106G08.3 protein. 544 258 Te-69 31
0508t0168000 (T;;poe;;ssy;szf’p}::; stance to aphids 547 251 8e67 33
RhNUDX1 0s09g0553300 NUDIX hydrolase domain containing protein 185 40.4 Se-04 45
05060634300  Similar to Nudix hydrolase 2 331 32 1.4e-01 29
0s08g0139700  Similar to terpene synthase 6 520 261 le-69 31
PgNdx1 0s09g0553300 NUDIX hydrolase domain containing protein 185 37 4e-03 32
0s08g0375900  Similar to Nudix hydrolase 22 251 36.6 7e-03 35
050620129700  Nudix hydrolase 14 326 343 2.6e-02 40
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Fig. 1 The phylogenetic tree of the NUDIX hydrolase family
E: Os, KHE; At, IR TT; Pg, K43, Rh, BEL; 045 17 /KRS NUDIX K EERIE A5, 27 U rE 7T NUDIX /K ARG LY, — A KA 2
NUDIX /K55 8 5t PgNdx1 DL — B3 NUDIX /KR % LA RAINUDX 1,
Note: Os, Oryza sativa; At.Arabidopsis thaliana; Pg, Pelargonium hortorum Bailey; Rh, Rosa hybrid; These include 17 members of the rice NUDIX
hydrolase family, 27 members of the Arabidopsis thaliana NUDIX hydrolase family, a Pg NUDIX hydrolase family member PgNdx1, and a Rh NUDIX
hydrolase family member RONUDX1.
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(a) OsNUDX11 I FEF Z5F91E]; (b)OsNUDX 11, RANUDX1 il PgNdx 1 28 [ 5741 L X 25 5% . 2R 43 =3 2445 (1) NUDIX /K fif it <7 45
45, PSSMID 5y 239948,

(a) Gene structure of OsNUDX11; (b) OsNUDX11 RhNUDX1 and PgNdx1 protein sequence alignment results. The red box represents the conserved
domains of NUDIX hydrolase shared by the three protein sequences.The PSSMID number is 239948.
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Fig.2 Analysis of the structure and protein conservative domain of OsNUDX11 gene
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(a) Hydrophobicity analysis of OsNUDX11 protein: Hydrophobicity score is on the vertical axis, and amino acid length on the horizontal axis; the
higher the score, the better the hydrophobicity of the protein. (b) OsNUDXI11 protein transmembrane region prediction: The vertical axis represents
transmembrane score and the horizontal axis represents amino acid length; the higher the score, the more likely the protein may undergo transmembrane
transition while performing its function. (c) The tertiary structures of OsSNUDX11 and RhNUDX1 proteins are indicated by a red arrow indicating a helical

structure and a blue arrow indicating a reticular structure.
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Fig.3 The physicochemical properties of OsNUDX11 protein the tertiary structure of OsNUDX11 and RhNUDX1
proteins
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(a) OsNUDX11 expression profile obtained from chip sequencing on the RichXPro website; (b) OsNUDXI1 expression profile. The same color
represents the same tissue from different periods; (¢) OsNUDXI11 induced expression profile predicted by TENOR website; (d) Expression profile of
OsNUDX11 under cold stress.
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Fig.4 OsNUDXI11 expression profile and induced expression
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Fig. 5 The subcellular localization prediction results of OsNUDX11 and the subcellular localization results of OsNUDX11
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Note: The eGFP-OsNUDXI11 fusion protein was transiently expressed in the leaves of 1-month-old Nicotiana benthamiana. eGFP shows green
fluorescence, chloroplasts show spontaneous red fluorescence under 488 nm excitation light, and yellow fluorescence appears after the superposition of
green fluorescence and red fluorescence. The scale bar is 20 pm.
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Screening and functional characterization of

rice geraniol synthase

Tan Shuchang'”, Sun Mingqi', Li Yan”
(1. School of Tropical Agriculture and Forestry, Hainan University, Danzhou, Hainan 571737, China; 2. Sanya Nanfan Institute,
Hainan University, Sanya, Hainan 572025, China)

Abstract: Fragrant rice has long been cherished for its superior quality, potent aroma, delicate flavor, and pleasant texture.
Geraniol, a valuable monoterpene with a rose-like odor, exhibits a broad spectrum of medicinal and physiological activities.
Despite its popularity, fragrant rice varieties typically contain low levels of geraniol, and the biochemical function of geraniol
synthase in these plants remains undefined. In this context the previously reported geraniol synthase, terpene synthase (TPS),
family and the nucleoside diphosphatase X (NUDIX) hydrolase family were employed to select candidate genes for geraniol
synthase in rice by using homologous sequence alignment analysis and phylogenetic tree analysis of rice, combined with tissue-
specific expression profiles, and OsNUDX11, a member of the NUDIX family that is highly expressed in rice roots and panicles
was identified. This gene is closely related to geraniol synthases from Rosa rugosa (rose) and Pelargonium graveolens (geranium).
Further analysis of protein physicochemical properties and tobacco transient expression assays confirmed that OsNUDX11 shares
consistent subcellular localization with geraniol synthases from rose and geranium. It is, thus, inferred that OsNUDX11 be
involved in geraniol biosynthesis, which provides a crucial basis for the large-scale synthesis of geraniol in rice.

Keywords: rice; geraniol; NUDIX hydrolases; subcellular localization
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