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R AT RO IRF VR X6 4 5 A5 380 %) - S98 40 ] R A T AT
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PRDE 2 om PR ER 40 Ak i 40 PR 1 B 2k, DA Fh
s SR () B R 3L S AR IR, 76 (2540.5) °C 2R
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123 HHRLTBOHS. £ BAKERSTEE
P LTB49 HiRE T NA B 5L BRI
RGFE, (28+0.5) C 4R SR 24 h, ZE ARG T
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FH 40 R DNA 42 B 7] £ (Cat: YZ-D3350,
R FER A R D FEHCE AR R LTB49
) DNA, & ] 16S rDNA i ] 51 % #£ 45 PCR §~
a4k H i H Ezbiocloud M ¥ (https:/www.
ezbiocloud.net) 5 AFHRUAE X & R 2 51 % LE 23 #r, AR
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I RGRKEM
1.2.4 HE 4k LTB49 3t Foc # H iE MR E X
FH A 22 M A 3Rk K96 Wi R TR 9% 2R FL R 1A
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Fh7E LB 32 W, (28+0.5) °C T4ET% 24 h 155
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P 8V, R L IR 129 AR B LR T PDA K5 3%
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) R 25 F T AT 7 LA TR R A 38 A X HE 2,
xR R R KB RN ER =2
i, 38 SO I R A AR TR IR A (D)1
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(A=) FIAb FEZH (LTB49 & BERRE) . Hf 1
B IR AL BRI (ODgoo=1) 25 F 4, T in 2 2 3k
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RIS T B 20 — AT 50 ) 00
Xof B 1 A o

125 E# LTBY Bt B AR EZ R ER AL

TR S FE AR — B0 v I 7 Ak, 7R3
JNE R ARTT 1 d AT HENE: 25 X4 R 50 mL
Foc fl 7 (1x10” CFU-mL™") 5 50 mL Z%1#7K; FH
X BB 2 25 50 mL Foc #i1 F3# (1x107 CFU-mL™)
55 50 mL f#UER ZEARAF B (1x10° CFU-mL™); Zb B
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(4)IHHEBHERSR, P EE S BAES S AR,
BHPH X Ry T 20K e T Bl 2 A0 R 9 0 3 45 B 10 e U
A ZE fFT B (Bacillus amyloliquefaciens, QST713),
5 R H SPSS 26 A AT BUdls GE 14, A
Duncan [CHT RN 22 1561725 53 0 00T .
TR (%) =
T (YL x 0 1 950
PR bR BB < e g
HIXBRAEROR (%) =
(Xt BRI 1 40 — A PR I 5 280 )
Xif B s 4 4

1.2.6 RREAETFINrT b FoAR 307 Al g M ad
Bk REGFRAL G 1.2.5 ik, 1595 30 d
X6 AN (] T Ak AR TR 07 8 I L AR A
AR TR AT BURE, B 40E 10 AR RE SR ST T
—80 °C VKA, fifi FH 7 £ (Cat: BC5165, BC0090,
BT R EE R A BRA 7] ) X 45 4 B 8 T - A
MBI E AL (L (superoxide dismutase, SOD)
i S AL W) i (peroxidase, POD) i 4 #4710 %€ o

x100  (3)

x100 (4)

2 FHRE5HM

2.1 EMHERFREETARMNGE Heaifbs
F|—Fkgm5 R LTB49 B4, HXF Foc RELH K
T AR R (8] 1), Ko 6 45 50 W HC A 7 3%
K 55.26%. AT X HRAH, A B2 M T
7K.

A. TE% Foc 1H7%; B. 3% LTBA49 il #Y Foc B4 .
A. Normal Foc colony; B. Foc colony inhibited by LTB49.
B 1 Bk LTB49 Xt RARIIE E N E LB (Foc) B9
R
Fig. 1 Inhibitory effect of bacterial strain LTB49 on
Fusarium oxysporum f. sp. cucumerinum(Foc)

22 EHRLTB R, SEBENRD FEES
£ LTB49 7E NB 537 53555 24 h J5 iR 7% 2
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LTB49 78 B AL IR 50 . V-P 356 . 38 B3 /K i i
55 b SR B L R ek A e rh R 4 PH

85 —1TB49
3387 L Bacillus velezensis CR-502 (AY603658)
Bacillus subtilis NCIB 3610 (ABQL01000001)
Bacillus nakamurai NRRL B-41091 (LSAZ01000028)
Bacillus tequilensis KCTC 13622 (AYTO01000043)
L Bacillus stercoris ICM 30051 (MN536904)
43| Bacillus cabrialesii TE3 (MK462260)
84 Bacillus inaquosorum KCTC 13429 (AMXN01000021)
Bacillus glycinifermentans GO-13 (LECW01000063)
© u Bacillus swezeyi NRRL B-41294 (MRBK01000096)
79 |_r— Bacillus sonorensis NBRC 101234 (AYTN01000016)
75 L Bacillus aerius 24K (AJ831843)
Bacillus safensis subsp. osmophilus BC09 (KY990920)
Bacillus australimaris NH71 1 (JX680098)

100 [ Bacillus pumilus ATCC 7061 (ABRX01000007)

79L Bacillus zhangzhouensis DW5-4 (JOTP01000061)

[ Bacillus gobiensis FIAT-4402 (CP012600)
100 Bacillus capparidis EGI 6500252 (KY003162)
L|:Bacillus salacetis SKP7-4 (LC367333)
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95
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2 EHR LTB49 EEFHE(A) EZRER(B) RREZGHUH(C)
Fig.2 Colony morphology (A), Gram-staining characteristics (B) and phylogenetic tree reconstruction of strain LTB49
based on 16S rRNA gene sequences (C)
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R 1 HE#Hk LTB49 By IR &V 4FE

Tab. 1 Physiological and biochemical characteristics of the
bacterial strain LTB49
A AR AR 45

Physiological and biochemical characteristics Results
1AM E W Peroxidase +
B Ak Gelatin liquefaction T
FH 34T Methyl red _
V-p +
TEMI KA Starch hydrolysis T
SRIWAE B Fructan production -
T FRFENEAE B Dihydroxyacetone formation +
i Ak &4 i Hydrogen sulfide generation +
P&t /K fi% Casein hydrolysis T
fi% 2 iR 7K fi# Tyrosine hydrolysis -
KA RN % i Phenylalanine deaminase -

T " FRBATE, - FoR I,

Note: "+" indicates positive reaction, "—" indicate

negative reaction.

FH] LTB49 n LU HIREE Y K FRE 0

I FEE SR oK, WPk LTB49 19 16S rDNA
J¥ % 7 Ezbiocloud W 3k kb XF 5 28 & &k Bacillus
velezensis W AH L1 R 99.79%. {fi | MEGA11.0
AR LTB49 B AT 53T Hexs 434, 2805
VEBEABHE VL AT R AL R A, 25 A& 2-C
JIi7R, kR LTB49 4b T ZF AT 1§ (Bacillus ) K 51
b, 5 R M R G, Eab Y
LR | A B AR 5 0 T2 SR e A5 B HT,
PRk LTB49 #4858 hy DSl 27 F AT 1
2.3 E#k LTB49 & B %Xt Foc #I & & & E L
B ZFAFTE LTB49 KEEIERT Foc 224K K
170 A AR A 3 s . B 224 KR
SR KW, LTB49 KIS RE 10 f5H BAE N
S R I TR L AR T S o B (F 3-A),
PR N 42.16% (18] 3-B) . B+ KilInss %k
B, 7E1E % W (ODgpo=1) T, £83d LTB49 K B2
LI Foe 181 & 32 2 ™ S AP, 25 F1 0 BR4H
B F 8 &R N 98% (& 3-C), 1 £8id LTB49 &
PR A 385 1Y Foc fi—F 8 & AR 9%, Tl K1k
£ 90.82% (& 3-D) . Z5R KW, ZFfIFTF H LTB49

X =

i A S LA
! -, => 2 K e R
e Leu o el

m: L T )
A. IEH Foc Wi7%; B. % LTB49 KBRS Y Foc THVE; C. IEH
W &1 Foc 43 A= 1 F; D. S Wi Bk LTB49 J % 1 W 3 i (¥ Foc 434
7
A. Normal Foc colony; B. Foc colony inhibited by LTB49
fermentation filtrate; C. Normally germinated Foc conidia; D. Foc conidia
inhibited by strain LTB49 fermentation broth.

3 Ekk LTB49 3 Foc BIHI1ER
Fig. 3 Inhibitory effect of strain LTB49 on Foc

A5 04T Foe 1+ R R, AAE Mbifl+
A 25 T )
2.4 FHITE LTB PiiaEMHEEREH RN
SR ZFAUFTTE LTB49 Bhie v TR 20 Rk
SR NE 4-A PR, R TE B B AR 2 Th &
B A R R W], VST 2T 1 LTB49 4b 2
BNAE KRB R AT, AT T b 2295 i 1 1)
725 OO IR, b PR B LS o e, 2
R o P B, R Ao A R S B 25 S A
FR, ZAE PR AR B R ECh 76.85; T4t 4E
W1 T A B ) B I 2R AT R AL AR e, Herh, A=
Bii B LTB49 &b 21 15 48 B AR 43.52, Bk
) 43.37%, WEAK T FHE X BE 40 (50.60%) o X 15t
AR B R AR AR TR B T B AR AR, B
R A= B T T R (L

R TR A K A= iR An s SR an &l 4-B
Jim o IR ZE SR, 25 PG IERA A ARG 220 R0
R 2T, i R BRVE (L RER, 25 ST
RG4S o AH EL XS IR, 2R FF B LTB49 4k
PRLRR AR BRI, A RS AT, a0
i i (b 58.36% ., i B4 79.66% ) |
PR (G0 22.62%) . AR (0 33.22% ) B 254
(G0 37.28%)EBA Frdets . R B R WY, 2840
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LTB49
B A 5 R BRE ALK eS|
Fresh weight Plant height root length Stem diameter
60
B b, |- 4 Shoot [, -3 Shoot
> T4 &8 Root 14 R Root g 5
4 a 40 b _L a
1 £ 4
on b ¢ L b
an = =
ﬁ_ Q&‘) 3 c g é 20 \g % 3 b
=22 25 =g
& = 2E S
= 91 — |—1—| u =)
i 8
0 b s
L 20 T 1
b I—l_l T a
L b L 40 0
CK JDF LTB49 CK JDF  LTB49 CK JDF LTB49
NGRS e AL BEZH N EPhEE )

Different processing groups

Different processing groups

Different processing groups

B4 BRHERZHMERE(A) REYELLXI(B)

Fig.4 Control of cucumber Fusarium wilt in pot experiments (A) and biomass comparison (B)

K2 FHEHFE LTB4 WM ENMHEREHT AR

Tab. 2 Effect of Bacillus strain LTB49 on control of potted
cucumber wilt

s | TtETEEU% HHXTBTIBROR %
Treatment Disease index Relative control effect
CK 76.85+1.60° -
JDF 37.96+3.21° 50.60+4.17
LTB49 43.52+4 24" 43.37+5.52

s [6]— 3 PR 6] /N R38R e Duncan OB &A% 22
ERRAEP<0.05/KF- 2557 .35

Note: Different lowercase letters in the same column
indicate significant differences at P < 0.05 by Duncan's new
multiple range test.

FFIE LTB49 AbFH A A5 24 G 5 2 B AR X Foe HY4T
PEIF O SR AR AR 4, G2 L TR s e 5 | I AE AR
EASAN o EH ZEFRAT I LTB49 X 24k 107 1A H
H—EBIARIEE

2.5 ZFFE LTB49 332 /KA F04R Z0RA 15
EERNEE R S A S A B T
PEFEAR AT LU T UL BAE AR A BT K o AT TR
LTB49 X} & It 7 AR SOD F1 POD 1% M 5 1]

ZERNE 5 iR EE S-A AT A A AR
20, 7 AR B it in PR PE X B8 B 7 JDF AR B B
LTB49 J& # JIE AR A /9 POD 36 P .3 T [, 1
FARFMMAR A EPEYS 835 T AR[EFRAZ SOD i
PETEIE A B B e 7oA T 2 B ARk (8] 5-B), 78
Jita o B X6 BE B 77 TDF R AR B B LTB49 Ji -
A AR (%) SOD fiff 1% M . 3% b F+, 4R IDF 1
LTB49 kb3 J& 7 HAH S 45 5%, IDF 28 i 3
()R K%, T LTB49 fUALBRLAE A B BT, xsegh
RO RE SRR KR R AR KB A &, ik L,
LTB49 4b 3 v AR AP0 Bl 15 MRS 3] 17— 1Y
B XA BT INsEA YT Foe AUHEHITE

3 #

P 2Rt 4 )T TR &AL AL (Foc ) 51 B2 119 25 )TN
Fh e — R UL AR, RIIAUR R X EY)
AP fa BT . ARk 2R AR 2O, e BT R
MR =6 A B BRI A 0 B TTOR 220 2 B 1 1
AE AR iR AR FBEAEEE L, AR
NI P AT S 38 o3 B Ak —FP X Foe B
A R A SR 0 ZEAFF 1 LTB49, i B 82
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Different processing locations
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B 5 AREALEXE/RI A FRES POD(A) #1 SOD(B) iE& I 0
Fig. 5 Effects of different treatments on POD (A) and SOD (B) activities in cucumber leaves and roots
T 2 N2 5T, TR —2H R [R)/NE S5 3R 4 Duncan [GHT R 22 G0 AE P<0.05 K24 57 1 3%

Note: Significant differences refer to the analysis of within-group differences; different lowercase letters within the same group indicate significant

differences at P < 0.05 level according to Duncan's new multiple range test.
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51 A HUE R BRSO,
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BIL 5T 8 5 A ) 3 78 3R B IR, AR W52 LTB49
149 4= B AR AR AE (VER K A . B RS T BE A ) 2 B
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AIF 3R 300 7 A I 23 A 7R, LTB49
A B 2 TR AR (AR FIMIAR ) ) POD 1 SOD %
P @ T, Wi A POD 76 1 T 4. SOD it -
T, X AR Sz e 19 I T e % IR AFL ) 1 2H 2y S
P BT AR B O, o AR R AR DAy T T AR Y AR AL
1 3k B R BT AL B P (A0 POD., SOD) 1 bk T
S R AR, BT SOD I 1 1 T U Tl R
5 & 4t 3R 45 P Pt M (systemic acquired resistance,
SAR) BYIIE A G, 18 3 U5 5 4= B B A Bk DR e ik 1
SRPUE T, 40 Soliman 458" 3@ i 1 50 2 B, D1 3T
AT GBI 4 i g N2 M e ALl G MR 5 A
Yo &R GEPi e o BH M X IR R 4k 3 S i R POD
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Biocontrol potential of Bacillus subtilis L TB49 against

cucumber Fusarium wilt

Qian Yunlong®, Zhao Yu, Yang Lin, Zhang Yunfei, Zhang Shujing’
(School of Tropical Agriculture and Forestry, Hainan University, Danzhou, Hainan 571737, China)

Abstract: To obtain an efficient biocontrol bacterial strain for managing cucumber Fusarium wilt caused by Fusarium oxysporum
f. sp. cucumerinum (Foc), a Bacillus strain (LTB49) with strong antagonistic activity (antagonism rate of 55.26%) was isolated
and screened from the rhizosphere soil of cucumber plants affected by the wilt disease, using gradient dilution and plate
confrontation methods. The strain was subsequently identified as Bacillus velezensis through morphological, physiological and
biochemical tests, and molecular biological techniques. The 10-fold diluted fermentation filtrate of the strain LTB49 showed
strong inhibition of mycelial growth of the wilt pathogen, with an inhibition rate of 42.16%, and a significant suppression of spore
germination, with an inhibition rate of 90.82%. Pot experiment results demonstrated that the strain LTB49 exhibited good
biocontrol efficacy against cucumber wilt disease (43.37%), with no significant difference compared to the commercial biocontrol
agent Bacillus amyloliquefaciens QST713 (50.60% efficacy). Further studies revealed that this strain enhanced resistance to the
wilt disease by inducing increased activities of superoxide dismutase (SOD) and peroxidase (POD), and significantly suppressed
the effect of the Fusarium species on cucumber plant growth, particularly dwarfing. These results suggest that B. velezensis
LTBA49 has a high potential for application in the biocontrol of cucumber wilt disease.

Keywords: cucumber Fusarium wilt; Bacillus velezensis; biocontrol potential
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