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& X 12-OH-JA, 8% 1 8 74 It (drabidopsis
thaliana)iar3/ill6 3 PR XL 5€ 28 (A SR T DA ) 2]
12-OH-JA, s W SRAFAE HoAthm 4 AT LU 2E 12-
OH-JAP,

R — Bt il A AT A 76 A 4 1R N R
JA AT R AL AL 12-OH-JA 1. A R
J&, 2k B FEIER T (Magnaporthe oryzae) W JIN4R,
fitk Abm A AT LA B HEKE A N TR JA F2 40 AT
THIKFE (Oryza sativa) B FEP . 2017 4%, BIRTIT R
#1j 2 %2 1k ¥ (jasmonate-induced oxygenases, JOXs/
jasmonic acid oxidases, JAOs)JOXs & [ #% & P H
A H IR JAHE AL 12-OH-JA F 1 7% 4 010
2021 4F, B ARIE TR IT JOX2 SRy JA | 3L
W 2-T 1% 12 (2-oxoglutarate, 20G ) FIV £ 5+
BA YN SRR, 730 RS E T JOX2 45 &
JA (53 FHLHINM, JOXs 2 ()@ TAE 4 3 R 41 vh
B TOR G O 2-FR N TR A R AR SN R
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M DOXC46 7 3R H, 4Ry 20GD # H
A DIOX-N (PF14226, Non-haem dioxygenases
in morphine synthesis N-terminal)fll 20G-Fe( Il )
(PF03171, 20G-Fe( I )oxygenase) %% ¥4 1 ; DOXC
KEMHEMY T EOR . Tt 20— A 1,
ZHMYIME MO FER . EKR . KBRS
BB A R, Horh JOXs IR HEES 5K
HIR AR . R IT ALJOX1/2/3/4 FED B35
Z 3] IA FFHKIE, AUOX1/2/4 T Y REN Hlz
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REA A U E R FHRER K, S EIAZ
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W45 HR W, R JOXs 3NS5 JA {5518 i
AR

K 2 (Manihot esculenta)f@d T K @& Bl
(Euphorbiaceae ) K 2 J& (Manihot) % - H= B 5T
AR, EFEZ R EARESMN, 558 %
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1.1 KZE MeJOXs RIEBREE KE AM560-
2 ZH AN v8.1 M AURIIT TAIR10 JE K 20 T 2k
F Phytozome v13.0 % #i& J& (https://phytozome.jgi.
doe.gov/), I LLT 2 FikLt G E R E MeJOXs
FWEFA , % 1 Fh 28 1 Pfam(http://pfam.xfam.
org/)EHE i T 8 2-0GD FR 1 35 H 1 i o ] KAt
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HSCAR: R BORATRE NG JOXs KL DK SR % B RIER A7 31

4 PFO3171, f#i il HMMER v3.3.20% 8l R AR 1
20 (E-value<107?), #1255 R 2 20GD FM5 K bt 5
P & i i3 SMART (https:smart.embl.de/) ., NCBI-
CDD (https://www.ncbi.nlm.nih.gov/cdd/) . Pfam 5§
B EREEEEA 2T R2DEA 11 20G-
Fe( I1)Z5 358; MRHE U R 9T 20GD 2k DA Bk
iz Fy 514, I MUSCLE v5.32" B4 E A7 AR I,
U F 9T 20GD & H & HE B 2 J¥ 51 LLXT, trimAl
v1.4.1%2 & 85 %t 5% ¢ %1, IQ-TREE v1.6.12% £ K
WAIREA R GE AR AR I T ALJOXs S 1%
HE DTE R o A7 0 3 RS MeJOXs iU
55 2 RO A AR T TR 2 4 4> AJOXs LD
7514 BLAST(E-value<10"°){8 & A
F 20, W15 e R 2 JOXs B, vE— A K 5 o vk
HE 2 &4 DIOX-N J 20G-Fe( 1 ) &5k,
TEAE MeJOXs FIFB o

1.2 KE MeJOXs EHELIFESHT  ExPASy
T. E.(http://www.expasy.org/tools) 715 MeJOXs
8 AL E5E 1 . DeepTMHMM-1.0 T. E. (https://
services.healthtech.dtu.dk/services/DeepTMHMM-
1.0/) 738 MeJOXs B[4 . WoLF PSORT 714k
T_E.(https://wolfpsort.hgc.jp/) . Cell PLoc 2.0(http:/
www.csbio.sjtu.edu.cn/bioinf/Cell-PLoc-2/) & &% &
T MeJOXs 3V 40 5E 7

13 KE MeJOXs RIFEBRRGHU D L
KRB WIS KFE . R JOX AR T 5
HLAit, A MUSCLE v5.3 0BT 2 L £ 1751
Fext, B I H MEGA 7.0 #E47 NJ 2 (Neighbour-
joining ) #4 #t R 4t k& B LM, X & p-distance 15
1, Bootstrap {Hi% 4 1 000,

14 KRE MeJOXs HEE LW, BHHFREBR
FEEFS RIEARBEERA TR MeJOXs
FR L 51 B N 45 44 15 5., TBtools- I v2.142 2 it
F P 25449, F ] TBtools- IT A LK 41y
HI 2 B MeJOXs 2 Ji% 1 53 e sk IR o st B3I
1500 bp /741, PlantCARE 7£ £k T. H. (http://bioinfor
matics.psb.ugent.be/webtools/plantcare/html/) 43+ 7
Ja Bl XA FH o442, TBtools- [T AT HEALITE
YERSCH A5 R . FIH] MEME Suite 5.5.7 7E4&
T. H. (http://meme-suite.org/) 73 BT MeJOXs & H &
SPHEFT, motif i REE N 10, HARSER R
IMEP, TBtools- Il 7] 4L motif Fil il 45

1.5 KREHRBBFEIRBE MeJOXs BEE KX
X OHM KREAWAN G H B

(TCODP0016) T 2 T #4485 11 ¥y 2 21 = B 4l %
(https://ngdc.cncb.ac.cn/tcod ), MeJA AbFR T A2 22
S B BRI T STHRIC 2R, A TR A 2290
g I TR Sk BL BT RN OR B E B BUR L M
Xpm(Xanthomonas phaseoli pv. manihotis )13 4 K
FAER 85 (‘SC8 ) Fh B ie SRk A ALK =
| FH TBtools- Il #k {4+ & F TPM(transcripts per
million) {H 22 il 5 [ 3R I8 &, £ F Log, FC(log,
fold change ) {EL22: il 22 5 F IR L I F ]

2 FHRE5HM

2.1 KE MeJOXs BEEZEEESEEEUN T F)
F HMMER i ¥ A 28 4L, SIBRAS B he e 4544
W EE S L3RS 165 53 1) AR 2 Me20GDs
KGR, B 5 SR IT 130 45 A2OGDs i 5144
BRI (K 1), B TIREITIY ATIG68080.1
K B IR E T A120GD FJEAE A& TAE i —4~
S, i A A Sy, 55 e A R
% Manes.17G088400.1 KR 5 [6] 43 > HA4Y A4~k
[F] VP A AEG, AL AR i 0L RS T AJOXs FE A
(JOXI: AT3G11180.1, JOX2: AT5G05600.1, JOX3:
AT3G55970.1, JOX4: AT2G38240.1) F 185y 3 fe &
WAL T 4 5KREE MeJOXs FEHNF B .
BE— 2 F PR T AJOXs 25 24 3 iR ¥ 4]
5K E A HIITAH BLASTP X, 4546 kb
B AT 45 AL 4 S5 FIRFEA 20GD K%y
5 DIOX-N il 20G-Fe( 11 ) 45438 ) A 2 JOXs
A 2), 5030 TARZESS 7. 8.9, 10 S AK,
HRYEAE G AR b A A7 BAR IR A 440 MeJOX1 ~ 4,
QIR Z 75 X R IR E MeJOXs 5 PIR
It AOXs & AL ETE 60% 2247, MeJOXs
F A o1 (8] /0 B 68% [RTEME, Hitp MeJOX1 5
MeJOX4, MeJOX2 5 MeJOX3 1 22 [ f5e A AR,
B AR JEPE S 913k 2 83%. 88%., K2 MelJOXs
mEREERE HEA 3, Bk MeJOX3 &
362 AL, HARW O 364 N KR HH
ST K /NHN 40.9 ~ 41.2 kDa; BRISZ5EH S 47 T
5.68 ~ 6.96, J& T Im PR YE R 5 8 H R KM R
BI/INF 0, £ 4 AR MelOXs A AEK
P H . DeepTMHMM J & il ] #] MeJOXs
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Fig.1 Phylogenetic analysis of 20GD proteins identified in cassava and Arabidopsis
T A3 0 AUOXs B MeJOXs %
Note: The grey clade represents the AtJOXs and MeJOXs subfamily.
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5% JOXs 3 K 75 AN [6] 9 6] 1) 4 4k OC &,
Fl MUSCLE %} #8l 9 7% 4 1~ AtIOXs, /K 7 4 4>
0sJOXs. ME 6 > NtJOXs M K % 4 4> MeJOXs
HATREEIR Z 75 X, Bl 5 A MEGAT7.0 i@ it
NI R G R EW (K 3) ., 4582, [F
THAHYI ) JOXs B Z SR 4 ¢ R0, R
PIRGIT . R JOXs F K] 1] 3R 25 6 R KRS 0
I, KAE OsJOXs FEPR B R — >33 . Ak,

AN MeJOXs FE [ BH i 43 R IS8 8E, MeJOX1/
4 FER B —2, MeJOX2/3 FLPR Bk b5 —2K, [d]—
53 3% ) MeJOXs 55 K i) A= ) 2% ) g vT fig 25 1
MeJOX1/4 H:H ST IT AJOX1/2/3 R4 KR
i, WURE AT REAAAEAI L AR 2 e

23 KE MeJOXs EEZEWM. BahFREAR
FEEFESW T MEME X MeJOXs %% & M
MR B 8 AMASE ) motif JEF, AR AL B 8]
A AL motif 4 A (& 4-A) . 38 i X} MeJOXs
F NG L1 K DR A5 A8 B A B, 4% A LD A
5AMHNET 2 NS, Hirh 3 MR gAY CDS
X, H4y 240 S'UTR Al 3’'UTR AE B IX . 1E
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Fig.2 Multiple sequence alignment of JOX proteins in cassava and Arabidopsis

£ 1 KE MeJOXs FikEARIBLIMER

Tab. 1 Physical and chemical properties of cassava JOX proteins
= f—} =N ) NG S g é £
Name Gene ID {mber o olecwar Theoretical pI ranc average o ubcetiuiar
amino acid weight hydropathicity localization
241 M Jt
MeJOX]  Manes.07G130300.1 364 41.2 6.47 -0.419
Cytoplasm
4
MeJOX2  Manes.08G092700.1 364 41.2 6.41 —0.364 AL
Cytoplasm
At 5T
MeJOX3  Manes.09G105900.1 362 41.1 6.96 —0.346 W5
Cytoplasm
4
MeJOX4  Manes.10G011800.1 364 40.9 5.68 —0.287 AL
Cytoplasm

A, AR SR B[R] — 2R MeJOXs JE K s i
AL LR 454, MeJOX2 Fl MeJOX3 #B 3 i
B ANNE TR P 2 NS TR LN 45
¥y, T MeJOX1 Fll MeJOX4 55 1 AW & T4, 4
2N E TR (K 4-B).,

X MeJOXs G5 W01 i st i A i i
1 500 bp Ze 475 8 F XA Hr RIS 8 F XA &
2 T A [ 28 B A =04 T oT 14, BR 1% WY
CAAT-box, TATA-box %5 4% .0 U2 AE FH oG 14 41,
AL Fr 22 Fh ) RE I R T, B AR DG e R | R R
7, AR IR R R L IR RN B T A . MYB 25 A i 4
S, B MeJOXs [ UR 31 B i i 2 1720
e i TG, F1 45 AT1-motif, GA-motif, Box4. AE-
box, TCT-motif, G-box. ACE. I-box, TCCC-motif
L FWANIRZEAY, FeBH MeJOXs W REMR I o 14 ' R
A5 Ak s WOER R IT 1 R AN B 5L ) A A R ]

MeJOXI 5 8+ 54 21> TGACG-motif, CGTCA-
motif 2B (1) 5 F R i B TG, MeJOX2 I 81 F %
A 1 TCA-element 2 %Y %) 7K 4% B2 W [ T 14
4 /1~ ABRE 2 # 1) Jii 7% & i 1o ST K2 11> P-box
FAV B RN ICIE, MeJOX3 Fl MeJOX4 433
TA 41K 1A ABRE 285U i) i 75 R i) 17 G 15
BRI Z b DA B H BHREA 1 — L0 [ T
5, I MeJOX1 )3 8T h& A 14> ARE ZRBIRYIR
AR BT, MeJOX2 I s FH &4 24 LTR 2%
B RR 0 B G . MeJOX4 3 8 7 h & 4 TC-
rich repeat 2 S5 15 FpipE AR S L T4 (&l 4-C) 6
XL AR T AR TERE 7 MeJOXs A AT fig
FEWCER PRI | PRI A0 A AR N ) R v R P
YER.

24 KE MeJOXs RirEFEALREHREST
J T BRIEARE MeJOXs FIHE H 1 ik B B AFAE
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Fig. 3 Phylogenetic tree of JOX genes in cassava, Arabidopsis, rice, and tobacco
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Fig.4 Gene structures, conserved protein motifs and cis-acting elements in the promoter regions of cassava MeJOXs
members
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Fig. 5 The expression heatmap of MeJOXs genes in
different cassava tissues
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Genome-wide identification and expression analysis of
jasmonate-induced oxygenases JOXs gene

family in Manihot esculenta

Hu Wencheng'*, Zhu Shousong'?, Wang Yixuan'?, Yang Da'?, Chen Yinhua'*"

(1. Nanfan School/Sanya Nanfan Institute, Hainan University, Sanya, Hainan 572025, China; 2. School of Tropical Agriculture
and Forestry, Danzhou, Hainan 571737, China)

Abstract: To explore the role of jasmonate-induced oxygenases JOX family genes in the growth, development, and stress
resistance of cassava (Manihot esculenta), MeJOXs family members were identified in cassava genome by bioinformatics
methods, and their gene structure, promoter cis-acting elements, evolutionary relationships and expression patterns were analyzed.
The results showed that there were four MeJOXs family genes in cassava genome, and each member had similar gene structure,
conserved motifs, and protein domains. Each gene member exhibited at least 68% protein homology, with the highest similarity
observed between MeJOX! and MeJOX4, as well as between MeJOX2 and MeJOX3. Promoter cis-acting elements analysis
showed that MeJOXs contained numerous light-responsive elements. Furthermore, each gene member possessed a varying number
of hormone-responsive elements. Phylogenetic analysis showed that MeJOXs were more closely related to JOX genes in
dicotyledonous plants. Transcriptome analysis revealed that all the genes were differentially expressed in stems, leaves, midveins,
and fibrous roots, with the exception of MeJOX?2 that was scarcely expressed in various cassava tissues. MeJOXs were induced by
MeJA in different cassava germplasm, with MeJOX3 demonstrating the most significant expression by inducing. Upon infection
by pathogen Xpm, MeJOXI1/3/4 responded promptly, but their response patterns were distinctly different. MeJOX1/3 were
upregulated, whereas MeJOX4 exhibited a trend of downregulation, and MeJOX2 exhibited negligible response. This study
provides a theoretical foundation for further elucidating the functions of the MeJOXs gene family in cassava.

Keywords: cassava; jasmonate-induced oxygenases JOXs; gene family; expression analysis
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