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SRR = A MR BT IR

U BRI T Y .

By W 5T I, A S AR W A A s e
(Phaeodactylum tricornutum Bohlin) ", 17 7F 5 H
Bl n B4, (A ZLIR I &(f——ptLDHA
IR R A FLBEARAE R, T Chen S5 UAIFSE
KW, ptLDHA A7 7E LIt AR A 17 45 (K220) , 15
ptLDHA 114 Z, B Ak & 4 X JH il 15 79 52 mi 475 R 3
o AR, NS T i 7L R I A Y
FEFE SRR AB I AL 1, — 3 FLIR I & 1 £ 1AL
B0 357 e 08 81 7 Tl 1) 3% 1, DA 08 59 L PN L R vk
JEOS BRI R, ptLDHA ) A& 7] et BE
%308 3 TS P R S, AT AE = A 4 4R AL A
MM T R .

AMEIE L) = e TE 5 cDNA R, vl T
ptLDHA FEH 731, ¥yt T [ ik 34k pMBP-C-
LDHA, %% A\ BL21(DE3) itk th HEAT A% 3R 3K, 1
b TR RIBAE, IFET His iRl & 8 mn 2l
RIS SE s ST — 20 H L S B AR B i AL A 1
SLEAE s FFAR GG A0 A M PR S X LT 1Y) 5%
M) B4 JE A, A B T i — 4R s B A BRI 1B
M 1 28 ELAE FHAE = fA w18 AR 2 v pg 4R
X4 WS AR W A b9 S G H B B S

1 MR

1.1 st

111 FA  SMEAEEIR A T R R A
BIGEFR L BRI N TR 2 Bige 5L, B
F 55 F 6 IR BE BE A 100 pmol-m s7!, i R
22 °C, SR 12 h JGRE/12 h RS,

112 BAREHEAL KW E (Escherichia coli)
DHS5o FI R AT B BL21(DE3 ) 4TI ifg 0k b A= 9
HARARAE (P E, L); 5k 2K pMD-
19T W T 5 H EAYHEARGRA A (P E, 6505
FIRBAK pMBP-C W T2k R A YR A BR
CICUE R eI

1.1.3 XA A RNA $EGH & BUls i
MR F £ . Bk DNA /N BOSF &3 T
Omega Bio-Tek (& [, 1 5w % 17 ) ; [ % s 4
DNA Maker DL2000, T4 DNA Ligase ¥JIt4 T 74 &%
TEMERE A YR A FR A R (Ph ], R a0 ) 5 BRI A
VI BamH I, Nhe 114 7388 QHH/RBHE A R (H
B, L ); B mige R 1 maker 1 T 20415
AW TRA R F (P E, 3305 Ni-IDA Agarose

6FF I T4 T AW TRBRMAR AR ChE, &
1 ); LDHA £ va BEHUARE i T 4 Wi A= Py RH i
By A R\ (b [E, B AT ); 3t HRP-conjugated
Affinipure Goat Anti-Rabbit 1gG I - 4 BEA4= 4
BHEARA R (hE, 11 ); ECL fk2: kOB &
W4T 2 A5 AE R AT FRA R (R E, 1) ; Hofth
A2 24 i X R [ = o 2k

1.2 BnERNEESHEHE

121 =#75383% LDHA AR K Bk =
A 48 48 B 1Y B RNA, ¥4 5% 8 ¢DNA, Lk ¢cDNA
YRR H, A7 BamH 1, Nhe 1 B4 5 00 519
LDHA-R 1 LDHA-F(% 1)i£47 PCR ¥4, k15 H
3L DNA J¥51]; PCR T BAFEF U R : 95 °C iR
P 5 min, 95 °C ZEME 155,56 C iEk 155,72 C 4t
fifi 45 s, 3£ 35 MG, ZJ57E 72 C LEff 7 min,
H PCR 7=tk A7 BB M6 I v vk, JF- DI [T e H
HSER R B .

®1 AHARFERBSIMFT

Tab. 1 Primer sequences

EIRZEA 5191751 (5-3")
Primer Sequence (5'-3")
LDHAF igGGATCCATGGAGTTCACGACAG
IDHA-R gGGCTAGCACTCTCTACAGCTGGGA
MI13F GTAAAACGACGGCCAGT
MI13R CAGGAAACAGCTATGAC

pMBP-C-LDHA-F TTGACAATTAATCATCGGCTCG
pMBP-C-LDHA-R ACTGGCCGTCGTTTTAC

TE: FRIZS51EKBamH 1 FiNhe T 51908 .
Note:The underlined represent the restriction sites for
BamH [ and Nhe [ in the primers.

122 pMD-19T-LDHA %8k ME XA
T4ADNA Ligase I a1 i H 0 3 R - Br 5 ro b 2k
& pMD-19T #EAT %z, SR AL B R GFFE, B
PR AR B 10 w3 827290, A K B A
DH5a/E 32 A 4 f v, 1R & IR &), VK% 25 min,
42 °C $I 45 s, PKIE 2 min, JIA 700 pL () LB 54
Fid, W AFE R F (37 °C, 180 rmin ) 5 5% 1 h, Fifi
J5 850> (5 000 rmin™)5 min, £ 600 uL b5 ; ¥
Pl 2 TR TR 505 B 100 pL B W, 7E & A 100
mg L7 2N &R M E ARSI LS,
37 °C R IR o R % KB IS T A
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100 mg L% % 1 % 2 MR AR 35 = 5, LA
M13F/M13R 50—y 4T PCR BiiE(5R 1) .
14 PCR =Wy dhAT B RE W B I FL K, Pk 2ty /)N
5 TR 09 TR AR, B2 IR 26 A T AR ) TR AT PR
ONEV o 4000 B IA Y Ok 45 8 pMID-19T-
LDHA.

1.2.3 pMBP-C-LDHA %A 8/ keyMz Ky
i A ) pMD-19T-LDHA Jifi ¥7 5 J5 K% 3 35 2% 1A
pMBP-C 435X BamH I I Nhe I #F17 XUV ),
IR AS RS G H 3L R BT pMBP-C %5 3,
. B )5, FIH] T4 DNA Ligase ¥ [8]05 7 #) % 42,
o o 2H R UKL, K EE A BORERE A B ORI A
P& DHSo /832 A Bl o, Bt 5 X 100 L B8, 7E
100 mg- L™ 2% 5 8 2= M ARG 72 5L B39 500 0,
Pk & B — B v% , Fl H pMBP-C-LDHA-F/pMBP-C-
LDHA-R 5| ¥ X%} . — TR/ #% PCR &k (% 1.
PCR F=WifFA T NE MR BE R FL K, PRk 5y /M &
T B TR B, BREIBOTOR AR T AR TR A BR A )
WY o 260 A B Sk i 45 A~ pMBP-C-LDHA
1.3 LDHA EHZAMEZRKIE. UREE
1.3.1 LDHA EAFANRBREFFEEHE
A ¥ pMBP-C-LDHA 5 ki 5 4k & K g ¥
BL21(DE3), fir 44 & pMBP-C-LDHA-BL21, ¥ 15
W STRATTE 54 100 mg L' 2 N H & 2 1Y [k
B b, Phis s — VK, 1T PCR B0liE. PkiEIE
WIS M T8 100 mg L' & F 5 RN
SR, 37 °C 5555 12 he RS, L 10 pL R
MR 5 mL SR NERERN LB B, 72 37 C
PR RT3, H BRI ODg=0.6. %%, 75 A [F]
IPTG WREEFNREL 550 T 553508, HARKMNF 2,
B RE, B 1 mL E W, 12 000 rrmin 2.0
1 min, 3 FIEE A 200 pL JEH# 7K, 12 000 r-min™
B0 1 min, 37 17 BlJS, B EEAH 80 uL &K

R2 AEEREMIPTG iRENESREEH

Tab.2 Inducing conditions with different temperatures and
IPTG concentrations

i/ C WA IPTGHE/(mmol L)
Temperature  Inducing time IPTG concentration
16 24 0.0.2,05.1.0
30 6 0.0.2,05.1.0
37 4 0.0.2.05.1.0

AL, A 20 pL S<&H B iR A5, K
1 10 min, )5, #17 SDS-PAGE HLykA
132 LDHA $4&EATEENIH RIFHERT
i) LDHA #5418 11 115 450k, 78 IPTG &
BEh 0.2 mmol'L™Y, 16 C24 h 41 F KBS
LDHA HHEARRIE, FiATENHEIRTE 4 C,
8 000 r'min"' .0 5 min, 57 _LIEW, A 5 mL %
F 2R B DIUE, AR AT 5 min, Bi5, K2
IRJE M AMRAE 4 °C VKR, BRSO A AR
Al . Rl PIARE L, FEVKOKIR 51T AT
PR, B IR 180 w, AT 2, JF ST [H]
H2s 5 4, F54E 30 min, FESMBERR)S, 7E 4 C &
K, L 8 000 rmin™ 5.0 30 min, WA IR
Mo BJE, B B0 AR S FIMA 1 mL 2 np
W, IR G TE KRR IR L4850 4 h, T84 24 A0 TR
WHEH., 5,76 4 CE&M4F, L 8000 rrmin™
B0 30 min, WA FIE RS RAE A BRI
ALY 3 AT R B R R A R 11 4
1T SDS-PAGE Hi, 3k A&l

1.3.3 LDHA £4% &4/ LDHA E4HEAE
BUAAAE TR R AR b, R, A I
HWH TR EMEN RN E A4k, Hk, A
5 AR 25 BRI F 3 3K, SR A TR
EFETE 4 °C TR IR H ARl R BE R 0., 20,
30, 150, 250 F1 500 mmol-L " At bk M 15 Ji v 16 Jid
B, BARBEVENL 3 UK AR AS [ DR kB 3k
0 H, YE4T SDS-PAGE 30 #T, K6 8 40 75 14 4%
WAL, NI S AR 2l Ak 254

1.3.4 Western blot %% LDHA £4%9 4ift
J& i) LDHA H 21 % [ 25 SDS-PAGE EE i HiL vk )i
K FWR A B VL AT BE, e B RSl 100 V 5%
El 1.5 h, #AE5E U, 5 NC B 5% (wiw) i 0
WIEE IR R3] 1.5 h, 1xTris-2h FR 2% vh ¥ TBST
ER VeV S WK, BIREIRE 5 min, PERELS G, K
NC Bt A 5% Gwiw) 5 RE W5 45 #6 B LA 1:1 000
i Bead () LDHA Z se &R, 4 CIEE R . K
H, H TBST & ¥k 5 K, BFXIEIFE 5 min; IITA
FH TBST 28 it A 1:10 000 5 Bgadt 9 HRP FRic 4
EPRPUA, EEMEF 1 h, M5, A TBST B4
5K, BRI S min. $5J5, A NC 35505
ECL 1k & 6, 76 BIORAD W% R 58 itk 7 i
5, ML k45
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2.1 LDHA R FFIMT 1R EHENEE

DL =535 cDNA AT PCR 971, 153
24 939 bp R/NEI = (E 1-A), 5 B 3EH R B
BB K /N—2L . % PCR F=¥) 7i [ & pMD-19T

M1 1 2

2000 bp

1 000 bp
750 bp
500 bp

100 bp

939 bp

BIRSG, b 2= KA DHSaESZ S 400, Fik
o 0 45 5 R Z2 A B OB, 2B 2 1050 bp
457, FITTIT i BE R/ — 3, X i 32 Hh 1 FH
TE I, 45 5 5 NCBI %4 % (GenBank % %
51 NW_002238036.1) 1 4 42 1 JF 5] JE A% — 3¢
(M 1-B).

Ml 3 4 5

2000 bp

1 000 bp
750 bp
500 bp

100 bp

1 050 bp

M2 10 11

2309 bp

——boW N

= UN~IOWVNOO O
SUVOVNOOOODO
SOOOOOOOO
Sogoogoogooao
TTTTTTT T T

A. LDHAZEH JPCRY L5, B, pMD-19T-LDHA PCRZE s C. pMD-19T-LDHAFIpMBP-CHEFI 25 5 5
D. T i kipMBP-C-LDHA PCRYE L
A. PCR amplification of the LDHA gene; B. PCR results of pMD-19T-LDHA; C. Restriction digestion results of
pMD-19T-LDHA and pMBP-C; D. PCR identification results of the recombinant plasmid pMBP-C-LDHA.

E 1 pMBP-C-LDHA Fik# kg
Fig.1 Construction of the pMBP-C-LDHA expression vector
#:: M1, DNA marker DL2 000; 1 ~ 2, LDHA 3 [N 3 F= 45 55 3 ~ 5, pMD-19T-LDHA B 11 25 5 5 M2, rrr marker DL5 000; 6 ~ 7, pMD-19T-
LDHA BFVI%558; 8 ~ 9, pMBP-C BiFHI4EH; 10 ~ 11, T4 Foki pMBP-C-LDHA PCR % ESE R
Note: M1, DNA Marker DL2 000; 1-2, LDHA Gene amplification products; 3—5, Restriction digestion results of pMD-19T-LDHA; M2, DNA marker
DL5 000; 6-7, Restriction digestion results of pMD-19T-LDHA; 8-9, Restriction digestion results of pMBP-C; 10—11, PCR identification results of

recombinant plasmid pMBP-C-LDHA.

2.2 LDHA EFE5 pMBP-C Fik#i{fitaiE it
B SR FokE pMD-19T-LDHA F1%5#/4 pMBP-C,
53 LDHA HWHE R B Al pMBP-C 25 A% 114 XL

Y=y, HUkEE SR BoR, FE O 8 IR S
25, B 204 939 bp, pMD-19T 45 14 Ky
2 692 bp, pMBP-C =5 # 44k 6 600 bp(&] 1-C), F&
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HXUE ) % . % B 9 FE 5 pMBP-C W) ™
Wy %, #4593 3 5K 1k pMBP-C-LDHA, Jf
AL E KT DHSaRZ 254N o 3o I
g WL R 7E WU AL B B2 2 309 bp (1 Ak
(B 1-D), £5& WU A 7 B/ Pk BHM: o b
W, 253 WoR, P FI & B 5 35 Fsok: -
WaFH, TEERE, RUSAEMER
LDHA )35 oRAa ZE i .

23 LDHA EAEAREFRSEHIT K
INEHSZANESEE 5 SRE A IPTG IR K
SO, ARSI R IR B I ODgo=0.6 i, 7EH A i
A IPTG LR S35 0.2, 0.5 A1 1.0 mmol-L,
JEFE 180 rmin”', 16, 30 1 37 °C T, 475537 24,
8 fl4h, G5HRE/R, 1E 16 °C. IPTG 4 0.2 mmol-L"'
T, 5355 24 h i, Rk E i m, MRERK %
(I 2-A) o FEILSRMAT, BRI RIAE D E
BT AR (30, 37 °C) FRIZRIAKE, HAME
() IPTG ¥ B A7 B T3k e e Wk B IPTG X 4t A=
HIAMRIVE L, R 228 R R R 38 5 4tk 52
AR TR AR OREE, BRI T AR IR R AR IR
PR R el alidk

24 LDHA ERAZERQFAES HERESHTE
kDaM12v3V45~§»_78

70

55 -

40 @ =

35 B 3
-

7 - 8

9 10 11

HTFESEKFES LDHA EHAE M, IFlkEY
100 mL P ARSEATHE P BB ), 430l LA b3 W
DUVE R A5FRE 5, 3547 SDS-PAGE HLIK AT . 45
K, 76 16 °C, IPTG 4 0.2 mmol-L ™' iK1k 24 h
Ji, LDHA B4 A FLAEE T B (E 2-B),
PE—EUESZ T HE 16 °C. 0.2 mmol-L™' IPTG i S
T, LDHA H 2428 H 1Y RN CEA Bom i = &,
1M H R 53 A RS AT, e 2k B A 2lifk
D RERF ST S0 T IS4

25 IDHAEHAEEHWEGNHUREE BT
PMBP-C-LDHA 5 3B W& A A L& R br 2,
W 3K 5 1 B AR A R 2 b AT 2liAk .
SDS-PAGE 55 (& 3-A) 7R, 7t FHIKmg vk i 43
514 150, 250 F1 500 mmol-L™ i, #FHELEL 78 kDa
AbREE SR B 1) H 45 . o, 250 mmol L
e H BRI PR IR AR5 1 LDHA S4B ML H
ety /b, 45 B, 250 mmol L' BRIk 1 GE %
FRHENE LDHA S & . Ak, il Western
Blot il i A PEME T >k (4 8 11 450 5 SR/
— (K 3-B). & L frid, a8 % M2 M
Western Blot K 1iE, s Zh 2k 53] T LDHA H4E
M, KRS REM S RIEEF 43 M B8 T At

12 kDa M 13 14 15 16
135
95
70

55
40
35

25

17

10

A. LDHABAUE ol #ik 5 B. LDHA AR (eGS0 T Ttk 04
A. Optimization of the optimal expression conditions for LDHA recombinant protein; B. Solubility analysis of LDHA
recombinant protein under optimal conditions.

& 2 LDHA EHRERFEMLSAHEMESHT
Fig.2 Expression optimization and solubility analysis of LDHA recombinant protein
e M, BAAHYLE A Marker; 1)16 °C, 1.0 mmol-L™ IPTG %% 24 h; 2)16 °C, 0.5 mmol-L ™" IPTG %% 24 h; 3)16 °C, 0.2 mmol-L™' IPTG %%
24 h;4)16 °C, 0 mmol-L™ IPTG 55 24 h; 5)30 °C, 1.0 mmol-L™' IPTG %5 8 h; 6)30 °C, 0.5 mmol-L™' IPTG ¥ 8 h; 7)30 °C, 0.2 mmol-L™" IPTG ¥
5 8 h; 8)30 C, 0 mmol'L™" IPTG 5 8 h; 9)37 °C, 1.0 mmol-L™ IPTG % 4 h; 10)37 °C, 0.5 mmol-L™ IPTG #5 4 h; 11)37 <C, 0.2 mmol'L"
IPTG i3 4 h; 12)37 °C, 0 mmol-L™' IPTG if5F 4 h; 13) £iFE T2 ; 14)16 °C, 0.2 mmol-L™' IPTG 24 h, 8 [1; 15)16 °C, 0.2 mmol-L™' IPTG, 24

h, L3 16)16 °C, 0.2 mmol-L™ IPTG, 24 h, I

Note: M, Protein Marker; 1) 16 °C, 1 mmol-L™" IPTG induction for 24 h; 2) 16 °C, 0.5 mmol-L ™' IPTG induction for 24 h; 3) 16 °C, 0.2 mmol-L"' IPTG
induction for 24 h; 4) 16 °C, 0 mmol-L™" IPTG induction for 24 h; 5) 30 °C, 1 mmol-L™" IPTG induction for 8 h; 6) 30 °C, 0.5 mmol-L™' IPTG induction for
8h; 7) 30 °C, 0.2 mmol-L™" IPTG induction for 8 h; 8) 30 °C, 0 mmol-L™" IPTG induction for 8 h; 9) 37 °C, 1.0 mmol-L™" IPTG induction for 4 h;
10) 37 <C, 0.5 mmol-L™" IPTG induction for 4 h; 11) 37 °C, 0.2 mmol-L™" IPTG induction for 4 h; 12) 37 °C, 0 mmol-L™" IPTG induction for 4 h; 13)
Samples were not induced; 14) 16 °C, 0.2 mmol-L™" IPTG induction for 24 h, Total Protein; 15) 16 °C, 0.2 mmol-L™' IPTG induction for 24 h, supernatant;

16) 16 °C, 0.2 mmol-L™" IPTG induction for 24 h, precipitate.
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A. LDHA®E41#E 1404k ; B. LDHARIS # [1I Western blothG:il] .
A. Purification of LDHA recombinant protein; B. Western blot detection of LDHA recombinant protein.

3 LDHA EHAZEBKHAS Western Blot #&ifll
Fig.3 Purification and Western Blot Detection of LDHA Recombinant Protein
TE: M, B BTG & 11 Marker; 1A FEEE 115 2)0 mmol-L'BRWE BE B ; 3)20 mmol- L™ DKM 3% /I ¥ 5 4)30 mmol-L™ DR M BE B ¥ 5 5)150
mmol-L™" BRI 6)250 mmol L' BRIEZEMEI; 7)500 mmol- L' BRIEVEMEY; 8) 41461 LDHA K 5 £ seBERUIR M N 454
Note: M. Color pre-stained protein marker; 1) Unbound protein; 2) 0 mmol-L™ imidazole elution; 3) 20 mmol-L™ imidazole elution; 4) 30
mmol-L'zole elution; 5) 150 mmol-L™" imidazole elution; 6) 250 mmol-L™" imidazole elution; 7) 500 mmol-L™' imidazole elution; 8) Purified LDHA

protein reacted with polyclonal antibody.
3 3

FERE 1 BR SR B 1 (PTMOBFSE T, 2k fk
TR fh A6 s DR G 240 R R 42 9 G B
A 32 0 o FLIRR I UM (LDH) VE Ay T 48 UH 1 i
rh ) DGR, 7 T A Ak LR RN DN R R 1) AH LR AL,
SRR M AT BT . AR
HTEADF S R, R = AWt s AR A i FL
e AL AE 1 A IR 42, (B 7L IR i =B ptLDHA Jf- R &
AL BB, SR, © F WF5T 48 1, LDH
TEZ R E RN I S IRAGAB G (57 25 RE B8 10 2501
LR PR ), B R LB 7 FLER AT rT B
KB EEEM . HIL, AW, ptLDHA 1)
TR ACAE i PT R ) 5% e L 1, ZEFLBEIL S
LR ACAE G 2 [ 38 5 AR, DI ifE— 25 i
X = f g a s R L] A A

Ji A% 3 PR TR SR W 9 28 1 B 4540 5 D e Ay Ak
BT Z —o AW LL =M TR A cDNA s
Me, I el T LDHA R, I BRI EE T we b3k
& pMD-19T il 3 ik #k /& pMBP-C-LDHA. 8 i
PCR £ 5% £k 1 BH A B B2, B0k T 2804 b 2 1Y) 1l
Iy, WA LDHA R BER/INA 939 bp. ST,
PCR %5 4351 7% T 29 1 050 bp F1 2 309 bp AY
o X — NG AT LU I B Y Be i Ay s ALl E

17 R o B FH A 519 43 0 6 T 25 JBU kL pMD-
19T 1 pMBP-C A9 b T i X3, AL, 47388 19 7= 4
Sy oks B R XIS LDHA JEH R B A . B
KT 7, pMD-19T 1) & F i X3 38 7 Be R /Ny
109 bp, fil I LDHA JE A (1) 939 bp, &K/ K
1050 bp; 1fii pMBP-C [ _LF ¥ X 3808 34 | Be R/
4 1367 bp, i I LDHA FEF ) 942 bp, B K/NH 2
309 bp. [IRZERPE— L BHIE T E BRI R
AR E WL & T LDHA JEIN, N I Se i 5%
FIRMTREfF 5T 28E T A

AR 0 4540 e % 52 ) HL R Rk 1Y B
=, INIMTSE I T Y ) 2 A S5 A RE R AIF9E . &
FHHV B TGF TR MadMa R (2 P 546 AR
W3R IR AR pET-32a(+)H, frfs 41 26 11 A8 Pk
A, fraat F A A BRI HDIRE . [FIAE, X1
Ihe I 45 1 3 2ok b A DA 3R K 3K pET-29b(+)-
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Prokaryotic expression and purification identification of
lactate dehydrogenase from Phaeodactylum tricornutum
Bohlin

Zheng Yimeng®, Duan Jiawen, Zhang Yi, Li Chenhui, Xie Zhenyu, Huang Aiyou"
(College of Marine Biology and Fisheries, Hainan University, Haikou, Hainan 570228, China)

Abstract: An attempt was made to investigate the expression of lactate dehydrogenase (ptLDHA), a key enzyme in lactate
metabolism, and to explore the acetylation modification sites on ptLDHA and their potential role in the interplay between
lactylation and acetylation modifications in Phaeodactylum tricornutum Bohlin. The ptLDHA gene sequence was first cloned
from P. tricornutum Bohlin cDNA, and then a prokaryotic expression vector, pMBP-C-LDHA, was constructed. The recombinant
plasmid was then transferred into Escherichia coli BL21 (DE3) for induced expression. Under optimized conditions (16 °C, 0.2
mmol-L™" IPTG for 24 hours), ptLDHA protein was successfully expressed, predominantly in a soluble form. The fusion protein
was purified using His-tag affinity chromatography and identified by Western blot with ptLDHA polyclonal antibodies. A single
protein band at approximately 78 kDa was observed, confirming that the purified protein was ptLDHA. The expression and
purification of ptLDHA in prokaryotic cells was successfully established, laying foundations for subsequent site-directed
mutagenesis of acetylation modification sites and for investigation of the effects of modification and demodification on enzyme
activity.

Keywords: Phaeodactylum tricornutum Bohlin; LDHA; prokaryotic expression; protein purification
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